language:
- en
- de
- es
- ar
- ja
- ko
- zh
license: cc-by-nc-sa-4.0
library_name: transformers
datasets:
- wi_locness
- matejklemen/falko_merlin
- paws
- paws-x
- facebook/asset
metrics:
- bleu
- rouge
- sari
- accuracy
pipeline_tag: text-generation
Model Card for mEdIT-xxl
The medit-xxl
model was obtained by fine-tuning the MBZUAI/bactrian-x-llama-13b-lora
model on the mEdIT dataset.
Paper: mEdIT: Multilingual Text Editing via Instruction Tuning
Authors: Vipul Raheja, Dimitris Alikaniotis, Vivek Kulkarni, Bashar Alhafni, Dhruv Kumar
Model Details
Model Description
- Language(s) (NLP): Arabic, Chinese, English, German, Japanese, Korean, Spanish
- Finetuned from model:
MBZUAI/bactrian-x-llama-13b-lora
Model Sources
- Repository: https://github.com/vipulraheja/medit
- Paper: https://arxiv.org/abs/2402.16472v1
How to use
Given an edit instruction and an original text, our model can generate the edited version of the text.
Specifically, our models support both multi-lingual and cross-lingual text revision. Note that the input and output texts are always in the same language. The monolingual vs. cross-lingual setting is determined by comparing the language of the edit instruction in relation to the language of the input text.
Instruction format
Adherence to the following instruction format is essential; failure to do so may result in the model producing less-than-ideal results.
instruction_tokens = [
"Instruction",
"Anweisung",
...
]
input_tokens = [
"Input",
"Aporte",
...
]
output_tokens = [
"Output",
"Produzione",
...
]
task_descriptions = [
"Fix grammatical errors in this sentence", # <-- GEC task
"Umschreiben Sie den Satz", # <-- Paraphrasing
...
]
The entire list of possible instructions, input/output tokens, and task descriptions can be found in the Appendix of our paper.
prompt_template = """### <instruction_token>:\n<task_description>\n### <input_token>:\n<input>\n### <output_token>:\n\n"""
Note that the tokens and the task description need not be in the language of the input (in the case of cross-lingual revision).
Run the model
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "grammarly/medit-xxl"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# English GEC using Japanese instructions
prompt = '### ε½δ»€:\nζη« γζζ³ηγ«γγ\n### ε
₯ε:\nI has small cat ,\n### εΊε:\n\n'
inputs = tokenizer(prompt, return_tensors='pt')
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)
# --> I have a small cat ,
# German GEC using Japanese instructions
prompt = '### ε½δ»€:\nζη« γζζ³ηγ«γγ\n### ε
₯ε:\nIch haben eines kleines Katze ,\n### εΊε:\n\n'
# ...
# --> Ich habe eine kleine Katze ,
Software
https://github.com/vipulraheja/medit
Citation
BibTeX:
@article{raheja2023medit,
title={mEdIT: mEdIT: Multilingual Text Editing via Instruction Tuning},
author={Vipul Raheja and Dimitris Alikaniotis and Vivek Kulkarni and Bashar Alhafni and Dhruv Kumar},
year={2024},
eprint={2402.16472v1},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
APA: Raheja, V., Alikaniotis, D., Kulkarni, V., Alhafni, B., & Kumar, D. (2024). MEdIT: Multilingual Text Editing via Instruction Tuning. ArXiv. /abs/2402.16472