handler
Browse files- handler.py +31 -0
handler.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from transformers import CLIPTokenizer, CLIPModel
|
3 |
+
|
4 |
+
|
5 |
+
class EndpointHandler():
|
6 |
+
def __init__(self, path=""):
|
7 |
+
# self.model= load_model(path)
|
8 |
+
hf_model_path = "openai/clip-vit-large-patch14"
|
9 |
+
self.model = CLIPModel.from_pretrained(hf_model_path)
|
10 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(hf_model_path)
|
11 |
+
|
12 |
+
def __call__(self, inputs: str) -> List[float]:
|
13 |
+
"""
|
14 |
+
data args:
|
15 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
16 |
+
kwargs
|
17 |
+
Return:
|
18 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
19 |
+
"""
|
20 |
+
|
21 |
+
# pseudo
|
22 |
+
# self.model(input)
|
23 |
+
token_inputs = self.tokenizer([inputs], padding=True, return_tensors="pt")
|
24 |
+
query_embed = self.model.get_text_features(**token_inputs)
|
25 |
+
np_query_embed = query_embed.detach().cpu().numpy()[0].tolist()
|
26 |
+
return np_query_embed
|
27 |
+
|
28 |
+
|
29 |
+
# if __name__ == "__main__":
|
30 |
+
# handler = EndpointHandler()
|
31 |
+
# print(handler("a dog"))
|