--- library_name: peft base_model: ybelkada/falcon-7b-sharded-bf16 tags: - trl - sft - generated_from_trainer - falcon - mental health - chatbot model-index: - name: falcon-7b-sharded-bf16-finetuned-mental-health-conv results: [] license: mit datasets: - heliosbrahma/mental_health_chatbot_dataset language: - en pipeline_tag: question-answering --- # falcon-7b-sharded-bf16-finetuned-mental-health-conv This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 - bnb_4bit_quant_storage: uint8 - load_in_4bit: True - load_in_8bit: False ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 100 ### Training results ### Framework versions - PEFT 0.5.0 - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 2.16.0 - Tokenizers 0.19.1