--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-1b-frisian-cv-8-1h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_8_0 type: common_voice_8_0 config: fy-NL split: validation args: fy-NL metrics: - name: Wer type: wer value: 0.23732323953720896 --- # wav2vec2-large-xls-r-1b-frisian-cv-8-1h This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4120 - Wer: 0.2373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 80 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.2987 | 4.35 | 100 | 3.0210 | 1.0 | | 3.1424 | 8.7 | 200 | 2.9611 | 1.0 | | 2.6299 | 13.04 | 300 | 0.9929 | 0.8377 | | 1.3134 | 17.39 | 400 | 0.5679 | 0.5264 | | 0.9747 | 21.74 | 500 | 0.4516 | 0.3764 | | 0.8755 | 26.09 | 600 | 0.4515 | 0.3403 | | 0.7227 | 30.43 | 700 | 0.4169 | 0.3211 | | 0.6634 | 34.78 | 800 | 0.4159 | 0.2962 | | 0.5568 | 39.13 | 900 | 0.4081 | 0.2795 | | 0.7943 | 43.48 | 1000 | 0.4090 | 0.2709 | | 0.5537 | 47.83 | 1100 | 0.4239 | 0.2649 | | 0.5596 | 52.17 | 1200 | 0.4029 | 0.2561 | | 0.5523 | 56.52 | 1300 | 0.4073 | 0.2524 | | 0.4579 | 60.87 | 1400 | 0.4098 | 0.2470 | | 0.6477 | 65.22 | 1500 | 0.4099 | 0.2446 | | 0.4957 | 69.57 | 1600 | 0.4167 | 0.2475 | | 0.3246 | 73.91 | 1700 | 0.4146 | 0.2389 | | 0.3937 | 78.26 | 1800 | 0.4120 | 0.2373 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3