greenw0lf commited on
Commit
3d84f6c
1 Parent(s): b99cffb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice_8_0
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: wav2vec2-large-xls-r-1b-frisian-cv-8
11
+ results:
12
+ - task:
13
+ name: Automatic Speech Recognition
14
+ type: automatic-speech-recognition
15
+ dataset:
16
+ name: common_voice_8_0
17
+ type: common_voice_8_0
18
+ config: fy-NL
19
+ split: validation
20
+ args: fy-NL
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 0.15637051849735753
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # wav2vec2-large-xls-r-1b-frisian-cv-8
31
+
32
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_8_0 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.2219
35
+ - Wer: 0.1564
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 7e-05
55
+ - train_batch_size: 30
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_ratio: 0.1
61
+ - num_epochs: 50
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
67
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
68
+ | 4.9356 | 2.42 | 300 | 3.0022 | 1.0 |
69
+ | 1.7278 | 4.84 | 600 | 0.4414 | 0.4147 |
70
+ | 0.9407 | 7.26 | 900 | 0.3058 | 0.2955 |
71
+ | 0.943 | 9.68 | 1200 | 0.2678 | 0.2530 |
72
+ | 0.7468 | 12.1 | 1500 | 0.2443 | 0.2237 |
73
+ | 0.6009 | 14.52 | 1800 | 0.2381 | 0.2097 |
74
+ | 0.6101 | 16.94 | 2100 | 0.2339 | 0.2003 |
75
+ | 0.5646 | 19.35 | 2400 | 0.2357 | 0.2047 |
76
+ | 0.5875 | 21.77 | 2700 | 0.2219 | 0.1914 |
77
+ | 0.5245 | 24.19 | 3000 | 0.2525 | 0.1807 |
78
+ | 0.5971 | 26.61 | 3300 | 0.2432 | 0.1784 |
79
+ | 0.563 | 29.03 | 3600 | 0.2454 | 0.1753 |
80
+ | 0.4441 | 31.45 | 3900 | 0.2237 | 0.1776 |
81
+ | 0.5552 | 33.87 | 4200 | 0.2313 | 0.1629 |
82
+ | 0.5568 | 36.29 | 4500 | 0.2318 | 0.1602 |
83
+ | 0.4342 | 38.71 | 4800 | 0.2324 | 0.1556 |
84
+ | 0.4723 | 41.13 | 5100 | 0.2296 | 0.1602 |
85
+ | 0.3357 | 43.55 | 5400 | 0.2267 | 0.1575 |
86
+ | 0.4588 | 45.97 | 5700 | 0.2243 | 0.1558 |
87
+ | 0.4594 | 48.39 | 6000 | 0.2219 | 0.1564 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.28.1
93
+ - Pytorch 2.0.0+cu117
94
+ - Datasets 2.11.0
95
+ - Tokenizers 0.13.3