--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-1b-frisian-cv-8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_8_0 type: common_voice_8_0 config: fy-NL split: validation args: fy-NL metrics: - name: Wer type: wer value: 0.14290815597771747 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_8_0 type: common_voice_8_0 config: fy-NL split: test args: fy-NL metrics: - name: Wer type: wer value: 0.1413499060557884 --- # wav2vec2-large-xls-r-1b-frisian-cv-8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2131 - Wer: 0.1429 And on the test set: - Wer: 0.1413 ## Model description This model has been developed for the thesis of my M.Sc. Voice Technology at Rijksuniversiteit Groningen - Campus Fryslân. It corresponds to experiment 1 where I use the same training set as the XLSR-53 baseline. ## Intended uses & limitations The intended use is for recognizing Frisian speech. Limitations include insufficient hyperparameter tuning, no LM rescoring, and using version 8.0 of Common Voice instead of 13.0. ## Training and evaluation data The training and evaluation splits used are the ones available in the Common Voice 8.0 Frisian subset. ## Training procedure The script used for training this model can be found in this GitHub repository: [link](https://github.com/greenw0lf/MSc-VT-Thesis/). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.0565 | 1.72 | 200 | 3.1053 | 1.0 | | 2.7675 | 3.45 | 400 | 1.1551 | 0.8611 | | 1.3474 | 5.17 | 600 | 0.4770 | 0.4397 | | 0.9617 | 6.9 | 800 | 0.3218 | 0.3343 | | 0.9058 | 8.62 | 1000 | 0.2741 | 0.2768 | | 0.9712 | 10.34 | 1200 | 0.2619 | 0.2505 | | 0.6908 | 12.07 | 1400 | 0.2288 | 0.2243 | | 0.745 | 13.79 | 1600 | 0.2288 | 0.2095 | | 0.7742 | 15.52 | 1800 | 0.2289 | 0.1979 | | 0.7231 | 17.24 | 2000 | 0.2198 | 0.1940 | | 0.6475 | 18.97 | 2200 | 0.2180 | 0.1992 | | 0.6421 | 20.69 | 2400 | 0.2133 | 0.1741 | | 0.5925 | 22.41 | 2600 | 0.1998 | 0.1747 | | 0.5608 | 24.14 | 2800 | 0.2212 | 0.1950 | | 0.5315 | 25.86 | 3000 | 0.2187 | 0.1624 | | 0.5362 | 27.59 | 3200 | 0.2057 | 0.1718 | | 0.563 | 29.31 | 3400 | 0.2090 | 0.1613 | | 0.4218 | 31.03 | 3600 | 0.2126 | 0.1531 | | 0.3826 | 32.76 | 3800 | 0.2084 | 0.1538 | | 0.356 | 34.48 | 4000 | 0.2115 | 0.1612 | | 0.2966 | 36.21 | 4200 | 0.2093 | 0.1536 | | 0.3377 | 37.93 | 4400 | 0.2061 | 0.1527 | | 0.321 | 39.66 | 4600 | 0.2121 | 0.1463 | | 0.2942 | 41.38 | 4800 | 0.2158 | 0.1441 | | 0.2931 | 43.1 | 5000 | 0.2173 | 0.1446 | | 0.2346 | 44.83 | 5200 | 0.2152 | 0.1436 | | 0.2543 | 46.55 | 5400 | 0.2066 | 0.1445 | | 0.2385 | 48.28 | 5600 | 0.2108 | 0.1432 | | 0.2726 | 50.0 | 5800 | 0.2131 | 0.1429 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3