update model card README.md
Browse files
wav2vec2-large-xls-r-1b-frisian/README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice_13_0
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-large-xls-r-1b-frisian
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: common_voice_13_0
|
17 |
+
type: common_voice_13_0
|
18 |
+
config: fy-NL
|
19 |
+
split: validation
|
20 |
+
args: fy-NL
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.15077102723494865
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2-large-xls-r-1b-frisian
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_13_0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2206
|
35 |
+
- Wer: 0.1508
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 7e-05
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 2
|
59 |
+
- total_train_batch_size: 32
|
60 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 60
|
64 |
+
- mixed_precision_training: Native AMP
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
70 |
+
| 4.9606 | 2.45 | 300 | 2.6184 | 1.0 |
|
71 |
+
| 1.4992 | 4.9 | 600 | 0.4233 | 0.4143 |
|
72 |
+
| 0.9757 | 7.35 | 900 | 0.2765 | 0.3021 |
|
73 |
+
| 0.8773 | 9.8 | 1200 | 0.2529 | 0.2528 |
|
74 |
+
| 0.7448 | 12.24 | 1500 | 0.2363 | 0.2258 |
|
75 |
+
| 0.7039 | 14.69 | 1800 | 0.2258 | 0.2103 |
|
76 |
+
| 0.6811 | 17.14 | 2100 | 0.2217 | 0.2074 |
|
77 |
+
| 0.6279 | 19.59 | 2400 | 0.2050 | 0.1915 |
|
78 |
+
| 0.5938 | 22.04 | 2700 | 0.2229 | 0.1922 |
|
79 |
+
| 0.6227 | 24.49 | 3000 | 0.2088 | 0.2019 |
|
80 |
+
| 0.5682 | 26.94 | 3300 | 0.2127 | 0.1874 |
|
81 |
+
| 0.5939 | 29.39 | 3600 | 0.2044 | 0.1789 |
|
82 |
+
| 0.5427 | 31.84 | 3900 | 0.2185 | 0.1791 |
|
83 |
+
| 0.5551 | 34.41 | 4200 | 0.2097 | 0.1644 |
|
84 |
+
| 0.5021 | 36.86 | 4500 | 0.2180 | 0.1678 |
|
85 |
+
| 0.4589 | 39.31 | 4800 | 0.2076 | 0.1581 |
|
86 |
+
| 0.5204 | 41.76 | 5100 | 0.2181 | 0.1587 |
|
87 |
+
| 0.512 | 44.21 | 5400 | 0.2263 | 0.1607 |
|
88 |
+
| 0.465 | 46.66 | 5700 | 0.2204 | 0.1493 |
|
89 |
+
| 0.4482 | 49.11 | 6000 | 0.2143 | 0.1527 |
|
90 |
+
| 0.3972 | 51.63 | 6300 | 0.2198 | 0.1617 |
|
91 |
+
| 0.3168 | 54.09 | 6600 | 0.2170 | 0.1528 |
|
92 |
+
| 0.2432 | 56.53 | 6900 | 0.2182 | 0.1529 |
|
93 |
+
| 0.252 | 58.98 | 7200 | 0.2206 | 0.1508 |
|
94 |
+
|
95 |
+
|
96 |
+
### Framework versions
|
97 |
+
|
98 |
+
- Transformers 4.28.1
|
99 |
+
- Pytorch 2.0.0+cu117
|
100 |
+
- Datasets 2.11.0
|
101 |
+
- Tokenizers 0.13.3
|