greenw0lf commited on
Commit
dbc5fc6
1 Parent(s): 58870e8

update model card README.md

Browse files
wav2vec2-large-xls-r-1b-frisian/README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice_13_0
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: wav2vec2-large-xls-r-1b-frisian
11
+ results:
12
+ - task:
13
+ name: Automatic Speech Recognition
14
+ type: automatic-speech-recognition
15
+ dataset:
16
+ name: common_voice_13_0
17
+ type: common_voice_13_0
18
+ config: fy-NL
19
+ split: validation
20
+ args: fy-NL
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 0.15077102723494865
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # wav2vec2-large-xls-r-1b-frisian
31
+
32
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_13_0 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.2206
35
+ - Wer: 0.1508
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 7e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 2
59
+ - total_train_batch_size: 32
60
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 60
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
69
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
70
+ | 4.9606 | 2.45 | 300 | 2.6184 | 1.0 |
71
+ | 1.4992 | 4.9 | 600 | 0.4233 | 0.4143 |
72
+ | 0.9757 | 7.35 | 900 | 0.2765 | 0.3021 |
73
+ | 0.8773 | 9.8 | 1200 | 0.2529 | 0.2528 |
74
+ | 0.7448 | 12.24 | 1500 | 0.2363 | 0.2258 |
75
+ | 0.7039 | 14.69 | 1800 | 0.2258 | 0.2103 |
76
+ | 0.6811 | 17.14 | 2100 | 0.2217 | 0.2074 |
77
+ | 0.6279 | 19.59 | 2400 | 0.2050 | 0.1915 |
78
+ | 0.5938 | 22.04 | 2700 | 0.2229 | 0.1922 |
79
+ | 0.6227 | 24.49 | 3000 | 0.2088 | 0.2019 |
80
+ | 0.5682 | 26.94 | 3300 | 0.2127 | 0.1874 |
81
+ | 0.5939 | 29.39 | 3600 | 0.2044 | 0.1789 |
82
+ | 0.5427 | 31.84 | 3900 | 0.2185 | 0.1791 |
83
+ | 0.5551 | 34.41 | 4200 | 0.2097 | 0.1644 |
84
+ | 0.5021 | 36.86 | 4500 | 0.2180 | 0.1678 |
85
+ | 0.4589 | 39.31 | 4800 | 0.2076 | 0.1581 |
86
+ | 0.5204 | 41.76 | 5100 | 0.2181 | 0.1587 |
87
+ | 0.512 | 44.21 | 5400 | 0.2263 | 0.1607 |
88
+ | 0.465 | 46.66 | 5700 | 0.2204 | 0.1493 |
89
+ | 0.4482 | 49.11 | 6000 | 0.2143 | 0.1527 |
90
+ | 0.3972 | 51.63 | 6300 | 0.2198 | 0.1617 |
91
+ | 0.3168 | 54.09 | 6600 | 0.2170 | 0.1528 |
92
+ | 0.2432 | 56.53 | 6900 | 0.2182 | 0.1529 |
93
+ | 0.252 | 58.98 | 7200 | 0.2206 | 0.1508 |
94
+
95
+
96
+ ### Framework versions
97
+
98
+ - Transformers 4.28.1
99
+ - Pytorch 2.0.0+cu117
100
+ - Datasets 2.11.0
101
+ - Tokenizers 0.13.3