--- license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_12_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-1b-frisian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_12_0 type: common_voice_12_0 config: fy-NL split: test args: fy-NL metrics: - name: Wer type: wer value: 0.15990775235054105 language: - fy --- # wav2vec2-large-xls-r-1b-frisian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_12_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2634 - WER: 0.1599 This model was developed together with [golesheed](https://huggingface.co/golesheed) for the course "Speech Recognition II" of the "MSc Voice Technology" program at Rijksuniversiteit Groningen - Campus Fryslân. ## Intended uses & limitations Intended use is for recognizing Frisian speech. Limitations include not enough hyperparameter tuning, no LM rescoring, and using v12 of Common Voice instead of v13. ## Training and evaluation data Training and evaluation splits used are the ones available in the Common Voice dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.7284 | 2.1 | 250 | 2.9453 | 1.0 | | 1.7496 | 4.2 | 500 | 0.5141 | 0.4771 | | 0.8168 | 6.3 | 750 | 0.3220 | 0.3148 | | 0.7403 | 8.4 | 1000 | 0.2988 | 0.2573 | | 0.7298 | 10.5 | 1250 | 0.2794 | 0.2347 | | 0.6303 | 12.61 | 1500 | 0.2577 | 0.2164 | | 0.5201 | 14.71 | 1750 | 0.2746 | 0.2162 | | 0.5189 | 16.81 | 2000 | 0.2543 | 0.2034 | | 0.5054 | 18.91 | 2250 | 0.2847 | 0.2071 | | 0.5112 | 21.01 | 2500 | 0.2772 | 0.1979 | | 0.5105 | 23.11 | 2750 | 0.2633 | 0.1920 | | 0.5032 | 25.21 | 3000 | 0.2667 | 0.1856 | | 0.46 | 27.31 | 3250 | 0.2730 | 0.1852 | | 0.4992 | 29.41 | 3500 | 0.2626 | 0.1782 | | 0.4535 | 31.51 | 3750 | 0.2778 | 0.1749 | | 0.4036 | 33.61 | 4000 | 0.2825 | 0.1747 | | 0.3347 | 35.71 | 4250 | 0.2797 | 0.1708 | | 0.2708 | 37.82 | 4500 | 0.2662 | 0.1712 | | 0.1825 | 39.92 | 4750 | 0.2652 | 0.1648 | | 0.1654 | 42.02 | 5000 | 0.2719 | 0.1628 | | 0.1387 | 44.12 | 5250 | 0.2552 | 0.1607 | | 0.1367 | 46.22 | 5500 | 0.2641 | 0.1591 | | 0.1218 | 48.32 | 5750 | 0.2634 | 0.1598 | ### Framework versions - Transformers 4.27.3 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2