--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_12_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-1b-frisian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_12_0 type: common_voice_12_0 config: fy-NL split: validation args: fy-NL metrics: - name: Wer type: wer value: 0.1685917915949865 --- # wav2vec2-large-xls-r-1b-frisian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_12_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2748 - Wer: 0.1686 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6809 | 2.1 | 250 | 2.0948 | 0.9948 | | 1.2928 | 4.2 | 500 | 0.4505 | 0.4003 | | 0.7887 | 6.3 | 750 | 0.3410 | 0.3287 | | 0.7422 | 8.4 | 1000 | 0.3017 | 0.2756 | | 0.7277 | 10.5 | 1250 | 0.3014 | 0.2624 | | 0.6339 | 12.61 | 1500 | 0.2833 | 0.2398 | | 0.5284 | 14.71 | 1750 | 0.2970 | 0.2404 | | 0.5186 | 16.81 | 2000 | 0.2886 | 0.2400 | | 0.515 | 18.91 | 2250 | 0.2891 | 0.2335 | | 0.5199 | 21.01 | 2500 | 0.2985 | 0.2261 | | 0.5228 | 23.11 | 2750 | 0.3026 | 0.2187 | | 0.5102 | 25.21 | 3000 | 0.2829 | 0.1994 | | 0.463 | 27.31 | 3250 | 0.2885 | 0.2012 | | 0.5072 | 29.41 | 3500 | 0.2936 | 0.1971 | | 0.4581 | 31.51 | 3750 | 0.2979 | 0.1912 | | 0.4103 | 33.61 | 4000 | 0.2935 | 0.1875 | | 0.3414 | 35.71 | 4250 | 0.2999 | 0.1860 | | 0.4484 | 37.82 | 4500 | 0.2917 | 0.1810 | | 0.3523 | 39.92 | 4750 | 0.2875 | 0.1759 | | 0.3763 | 42.02 | 5000 | 0.2901 | 0.1758 | | 0.2416 | 44.12 | 5250 | 0.2707 | 0.1740 | | 0.1878 | 46.22 | 5500 | 0.2707 | 0.1717 | | 0.1623 | 48.32 | 5750 | 0.2748 | 0.1686 | ### Framework versions - Transformers 4.27.3 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2