Update to Latest Mosaic Version (#2)
Browse files- Fast forward to latest mosaic version (d18b7c70b2b270ec7055a5517448291e8f8d65b2)
Co-authored-by: K <kornfield@users.noreply.huggingface.co>
- README.md +57 -45
- adapt_tokenizer.py +4 -5
- attention.py +177 -115
- blocks.py +21 -21
- configuration_mpt.py +33 -11
- custom_embedding.py +10 -0
- fc.py +7 -0
- ffn.py +39 -0
- flash_attn_triton.py +484 -0
- generation_config.json +1 -0
- hf_prefixlm_converter.py +6 -241
- meta_init_context.py +17 -12
- modeling_mpt.py +97 -116
- norm.py +11 -10
- param_init_fns.py +49 -51
- requirements.txt +2 -0
README.md
CHANGED
@@ -14,23 +14,17 @@ datasets:
|
|
14 |
inference: false
|
15 |
---
|
16 |
|
17 |
-
### Attribution
|
18 |
-
|
19 |
-
This model is derived from [MosaicML's MPT-7B model](https://huggingface.co/mosaicml/mpt-7b/tree/main), with changes from
|
20 |
-
[cekal/mpt-7b-peft-compatible](https://huggingface.co/cekal/mpt-7b-peft-compatible) applied; each licensed under the
|
21 |
-
Apache License, version 2.0.
|
22 |
-
|
23 |
# MPT-7B
|
24 |
|
25 |
MPT-7B is a decoder-style transformer pretrained from scratch on 1T tokens of English text and code.
|
26 |
This model was trained by [MosaicML](https://www.mosaicml.com).
|
27 |
|
28 |
-
MPT-7B is part of the family of MosaicPretrainedTransformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference.
|
29 |
|
30 |
-
These architectural changes include performance-optimized layer implementations and the elimination of context length limits by replacing
|
31 |
-
positional embeddings with Attention with Linear Biases ([ALiBi](https://arxiv.org/abs/2108.12409)).
|
32 |
-
Thanks to these modifications, MPT models can be trained with high throughput efficiency and stable convergence.
|
33 |
-
MPT models can also be served efficiently with both standard HuggingFace pipelines and NVIDIA's [FasterTransformer](https://github.com/NVIDIA/FasterTransformer).
|
34 |
|
35 |
This model uses the MosaicML LLM codebase, which can be found in the [llm-foundry repository](https://github.com/mosaicml/llm-foundry). It was trained by MosaicML’s NLP team on the [MosaicML platform](https://www.mosaicml.com/training) for LLM pretraining, finetuning, and inference.
|
36 |
|
@@ -55,15 +49,13 @@ We demonstrate generations as long as 80k tokens on a single A100-80GB GPU in ou
|
|
55 |
* License: Apache 2.0
|
56 |
|
57 |
* [MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct): a model for short-form instruction following.
|
58 |
-
Built by finetuning MPT-7B on a [dataset](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) we also release, derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets.
|
59 |
-
* License:
|
60 |
-
* [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct)
|
61 |
|
62 |
* [MPT-7B-Chat](https://huggingface.co/mosaicml/mpt-7b-chat): a chatbot-like model for dialogue generation.
|
63 |
Built by finetuning MPT-7B on the [ShareGPT-Vicuna](https://huggingface.co/datasets/jeffwan/sharegpt_vicuna), [HC3](https://huggingface.co/datasets/Hello-SimpleAI/HC3),
|
64 |
[Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), [HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), and [Evol-Instruct](https://huggingface.co/datasets/victor123/evol_instruct_70k) datasets.
|
65 |
* License: _CC-By-NC-SA-4.0_
|
66 |
-
* [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-chat)
|
67 |
|
68 |
## Model Date
|
69 |
|
@@ -77,7 +69,7 @@ Apache-2.0
|
|
77 |
|
78 |
* [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b)
|
79 |
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
|
80 |
-
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://
|
81 |
|
82 |
|
83 |
## How to Use
|
@@ -91,37 +83,41 @@ model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
91 |
trust_remote_code=True
|
92 |
)
|
93 |
```
|
94 |
-
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
|
95 |
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
|
96 |
`MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.
|
97 |
|
98 |
-
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model with `attn_impl='triton'` and
|
99 |
```python
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
104 |
config.attn_config['attn_impl'] = 'triton'
|
|
|
105 |
|
106 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
107 |
-
|
108 |
config=config,
|
109 |
-
torch_dtype=torch.bfloat16,
|
110 |
trust_remote_code=True
|
111 |
)
|
112 |
-
model.to(device='cuda:0')
|
113 |
```
|
114 |
|
115 |
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
|
116 |
|
117 |
```python
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
config.
|
|
|
|
|
123 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
124 |
-
|
125 |
config=config,
|
126 |
trust_remote_code=True
|
127 |
)
|
@@ -131,7 +127,23 @@ This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co
|
|
131 |
|
132 |
```python
|
133 |
from transformers import AutoTokenizer
|
134 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
```
|
136 |
|
137 |
## Model Description
|
@@ -159,7 +171,7 @@ The model has been modified from a standard transformer in the following ways:
|
|
159 |
|
160 |
### Streaming Datasets
|
161 |
|
162 |
-
Data was formatted using the MosaicML [StreamingDataset](https://github.com/mosaicml/streaming) library to host our data in object storage and efficiently stream it to our compute cluster during training.
|
163 |
StreamingDataset obviates the need to download the whole dataset before starting training, and allows instant resumption of training from any point in the dataset.
|
164 |
|
165 |
|
@@ -184,24 +196,24 @@ The model was trained for 1T tokens (with batch size 1760 and sequence length 20
|
|
184 |
Samples for each batch were selected from one of the datasets with the probability specified above.
|
185 |
The examples were shuffled within each dataset, and each example was constructed from as many sequences from that dataset as were necessary to fill the 2048 sequence length.
|
186 |
|
187 |
-
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. This BPE tokenizer has a number of desirable characteristics,
|
188 |
-
most of which are relevant for tokenizing code:
|
189 |
-
(1) It was trained on a diverse mix of data that includes code (The Pile)
|
190 |
-
(2) It applies consistent space delimitation, unlike the GPT2 tokenizer which tokenizes inconsistently depending on the presence of prefix spaces
|
191 |
-
(3) It contains tokens for repeated space characters, which allows superior compression of text with large amounts of repeated space characters.
|
192 |
|
193 |
The model vocabulary size of 50432 was set to be a multiple of 128 (as in [MEGATRON-LM](https://arxiv.org/abs/1909.08053)), model flop utilization (MFU) increased by up to four percentage points.
|
194 |
|
195 |
### Training Configuration
|
196 |
|
197 |
-
This model was trained on 440 A100-40GBs for about 9.5 days using the [MosaicML Platform](https://www.mosaicml.com/platform).
|
198 |
-
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer.
|
199 |
|
200 |
## Limitations and Biases
|
201 |
|
202 |
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
|
203 |
|
204 |
-
MPT-7B (Base) is **not** intended for deployment without finetuning.
|
205 |
It should not be used for human-facing interactions without further guardrails and user consent.
|
206 |
|
207 |
MPT-7B can produce factually incorrect output, and should not be relied on to produce factually accurate information.
|
@@ -224,11 +236,11 @@ Please cite this model using the following format:
|
|
224 |
```
|
225 |
@online{MosaicML2023Introducing,
|
226 |
author = {MosaicML NLP Team},
|
227 |
-
title = {Introducing MPT-7B: A New Standard for Open-Source,
|
228 |
-
|
229 |
year = {2023},
|
230 |
url = {www.mosaicml.com/blog/mpt-7b},
|
231 |
-
note = {Accessed: 2023-
|
232 |
-
urldate = {2023-
|
233 |
}
|
234 |
```
|
|
|
14 |
inference: false
|
15 |
---
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# MPT-7B
|
18 |
|
19 |
MPT-7B is a decoder-style transformer pretrained from scratch on 1T tokens of English text and code.
|
20 |
This model was trained by [MosaicML](https://www.mosaicml.com).
|
21 |
|
22 |
+
MPT-7B is part of the family of MosaicPretrainedTransformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference.
|
23 |
|
24 |
+
These architectural changes include performance-optimized layer implementations and the elimination of context length limits by replacing
|
25 |
+
positional embeddings with Attention with Linear Biases ([ALiBi](https://arxiv.org/abs/2108.12409)).
|
26 |
+
Thanks to these modifications, MPT models can be trained with high throughput efficiency and stable convergence.
|
27 |
+
MPT models can also be served efficiently with both standard HuggingFace pipelines and NVIDIA's [FasterTransformer](https://github.com/NVIDIA/FasterTransformer).
|
28 |
|
29 |
This model uses the MosaicML LLM codebase, which can be found in the [llm-foundry repository](https://github.com/mosaicml/llm-foundry). It was trained by MosaicML’s NLP team on the [MosaicML platform](https://www.mosaicml.com/training) for LLM pretraining, finetuning, and inference.
|
30 |
|
|
|
49 |
* License: Apache 2.0
|
50 |
|
51 |
* [MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct): a model for short-form instruction following.
|
52 |
+
Built by finetuning MPT-7B on a [dataset](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) we also release, derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets.
|
53 |
+
* License: Apache 2.0
|
|
|
54 |
|
55 |
* [MPT-7B-Chat](https://huggingface.co/mosaicml/mpt-7b-chat): a chatbot-like model for dialogue generation.
|
56 |
Built by finetuning MPT-7B on the [ShareGPT-Vicuna](https://huggingface.co/datasets/jeffwan/sharegpt_vicuna), [HC3](https://huggingface.co/datasets/Hello-SimpleAI/HC3),
|
57 |
[Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), [HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), and [Evol-Instruct](https://huggingface.co/datasets/victor123/evol_instruct_70k) datasets.
|
58 |
* License: _CC-By-NC-SA-4.0_
|
|
|
59 |
|
60 |
## Model Date
|
61 |
|
|
|
69 |
|
70 |
* [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b)
|
71 |
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
|
72 |
+
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
|
73 |
|
74 |
|
75 |
## How to Use
|
|
|
83 |
trust_remote_code=True
|
84 |
)
|
85 |
```
|
86 |
+
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
|
87 |
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
|
88 |
`MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.
|
89 |
|
90 |
+
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
|
91 |
```python
|
92 |
+
import torch
|
93 |
+
import transformers
|
94 |
+
|
95 |
+
name = 'mosaicml/mpt-7b'
|
96 |
+
|
97 |
+
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
|
98 |
config.attn_config['attn_impl'] = 'triton'
|
99 |
+
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
|
100 |
|
101 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
102 |
+
name,
|
103 |
config=config,
|
104 |
+
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
|
105 |
trust_remote_code=True
|
106 |
)
|
|
|
107 |
```
|
108 |
|
109 |
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
|
110 |
|
111 |
```python
|
112 |
+
import transformers
|
113 |
+
|
114 |
+
name = 'mosaicml/mpt-7b'
|
115 |
+
|
116 |
+
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
|
117 |
+
config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096
|
118 |
+
|
119 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
120 |
+
name,
|
121 |
config=config,
|
122 |
trust_remote_code=True
|
123 |
)
|
|
|
127 |
|
128 |
```python
|
129 |
from transformers import AutoTokenizer
|
130 |
+
tokenizer = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
|
131 |
+
```
|
132 |
+
|
133 |
+
The model can then be used, for example, within a text-generation pipeline.
|
134 |
+
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
|
135 |
+
|
136 |
+
```python
|
137 |
+
from transformers import pipeline
|
138 |
+
|
139 |
+
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
|
140 |
+
|
141 |
+
with torch.autocast('cuda', dtype=torch.bfloat16):
|
142 |
+
print(
|
143 |
+
pipe('Here is a recipe for vegan banana bread:\n',
|
144 |
+
max_new_tokens=100,
|
145 |
+
do_sample=True,
|
146 |
+
use_cache=True))
|
147 |
```
|
148 |
|
149 |
## Model Description
|
|
|
171 |
|
172 |
### Streaming Datasets
|
173 |
|
174 |
+
Data was formatted using the MosaicML [StreamingDataset](https://github.com/mosaicml/streaming) library to host our data in object storage and efficiently stream it to our compute cluster during training.
|
175 |
StreamingDataset obviates the need to download the whole dataset before starting training, and allows instant resumption of training from any point in the dataset.
|
176 |
|
177 |
|
|
|
196 |
Samples for each batch were selected from one of the datasets with the probability specified above.
|
197 |
The examples were shuffled within each dataset, and each example was constructed from as many sequences from that dataset as were necessary to fill the 2048 sequence length.
|
198 |
|
199 |
+
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. This BPE tokenizer has a number of desirable characteristics,
|
200 |
+
most of which are relevant for tokenizing code:
|
201 |
+
(1) It was trained on a diverse mix of data that includes code (The Pile)
|
202 |
+
(2) It applies consistent space delimitation, unlike the GPT2 tokenizer which tokenizes inconsistently depending on the presence of prefix spaces
|
203 |
+
(3) It contains tokens for repeated space characters, which allows superior compression of text with large amounts of repeated space characters.
|
204 |
|
205 |
The model vocabulary size of 50432 was set to be a multiple of 128 (as in [MEGATRON-LM](https://arxiv.org/abs/1909.08053)), model flop utilization (MFU) increased by up to four percentage points.
|
206 |
|
207 |
### Training Configuration
|
208 |
|
209 |
+
This model was trained on 440 A100-40GBs for about 9.5 days using the [MosaicML Platform](https://www.mosaicml.com/platform).
|
210 |
+
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer.
|
211 |
|
212 |
## Limitations and Biases
|
213 |
|
214 |
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
|
215 |
|
216 |
+
MPT-7B (Base) is **not** intended for deployment without finetuning.
|
217 |
It should not be used for human-facing interactions without further guardrails and user consent.
|
218 |
|
219 |
MPT-7B can produce factually incorrect output, and should not be relied on to produce factually accurate information.
|
|
|
236 |
```
|
237 |
@online{MosaicML2023Introducing,
|
238 |
author = {MosaicML NLP Team},
|
239 |
+
title = {Introducing MPT-7B: A New Standard for Open-Source,
|
240 |
+
Commercially Usable LLMs},
|
241 |
year = {2023},
|
242 |
url = {www.mosaicml.com/blog/mpt-7b},
|
243 |
+
note = {Accessed: 2023-05-05},
|
244 |
+
urldate = {2023-05-05}
|
245 |
}
|
246 |
```
|
adapt_tokenizer.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
-
from typing import
|
2 |
-
from transformers import AutoTokenizer,
|
3 |
-
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
4 |
NUM_SENTINEL_TOKENS: int = 100
|
5 |
|
6 |
-
def adapt_tokenizer_for_denoising(tokenizer:
|
7 |
"""Adds sentinel tokens and padding token (if missing).
|
8 |
|
9 |
Expands the tokenizer vocabulary to include sentinel tokens
|
@@ -34,7 +33,7 @@ class AutoTokenizerForMOD(AutoTokenizer):
|
|
34 |
"""
|
35 |
|
36 |
@classmethod
|
37 |
-
def from_pretrained(cls, *args, **kwargs):
|
38 |
"""See `AutoTokenizer.from_pretrained` docstring."""
|
39 |
tokenizer = super().from_pretrained(*args, **kwargs)
|
40 |
adapt_tokenizer_for_denoising(tokenizer)
|
|
|
1 |
+
from typing import Any
|
2 |
+
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
|
|
3 |
NUM_SENTINEL_TOKENS: int = 100
|
4 |
|
5 |
+
def adapt_tokenizer_for_denoising(tokenizer: PreTrainedTokenizerBase) -> None:
|
6 |
"""Adds sentinel tokens and padding token (if missing).
|
7 |
|
8 |
Expands the tokenizer vocabulary to include sentinel tokens
|
|
|
33 |
"""
|
34 |
|
35 |
@classmethod
|
36 |
+
def from_pretrained(cls, *args: Any, **kwargs: Any) -> PreTrainedTokenizerBase:
|
37 |
"""See `AutoTokenizer.from_pretrained` docstring."""
|
38 |
tokenizer = super().from_pretrained(*args, **kwargs)
|
39 |
adapt_tokenizer_for_denoising(tokenizer)
|
attention.py
CHANGED
@@ -1,14 +1,30 @@
|
|
1 |
"""Attention layers."""
|
2 |
import math
|
3 |
import warnings
|
4 |
-
from typing import Optional
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from einops import rearrange
|
|
|
8 |
from torch import nn
|
9 |
-
from .
|
|
|
10 |
|
11 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
if original_is_causal and num_query_tokens != num_key_tokens:
|
13 |
if num_query_tokens != 1:
|
14 |
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
|
@@ -16,27 +32,57 @@ def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_cau
|
|
16 |
return False
|
17 |
return original_is_causal
|
18 |
|
19 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
21 |
-
k = rearrange(key, 'b s (h d) -> b h d s', h=
|
22 |
-
v = rearrange(value, 'b s (h d) -> b h s d', h=
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
(b, _, s_q, d) = q.shape
|
25 |
s_k = k.size(-1)
|
|
|
|
|
|
|
26 |
if softmax_scale is None:
|
27 |
softmax_scale = 1 / math.sqrt(d)
|
28 |
attn_weight = q.matmul(k) * softmax_scale
|
29 |
if attn_bias is not None:
|
|
|
|
|
|
|
30 |
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
|
31 |
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
|
32 |
attn_weight = attn_weight + attn_bias
|
|
|
33 |
if key_padding_mask is not None:
|
34 |
if attn_bias is not None:
|
35 |
-
warnings.warn('
|
36 |
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
37 |
-
if is_causal:
|
38 |
s = max(s_q, s_k)
|
39 |
-
causal_mask = attn_weight.new_ones(s, s, dtype=torch.
|
40 |
causal_mask = causal_mask.tril()
|
41 |
causal_mask = causal_mask.to(torch.bool)
|
42 |
causal_mask = ~causal_mask
|
@@ -45,25 +91,42 @@ def scaled_multihead_dot_product_attention(query, key, value, n_heads, softmax_s
|
|
45 |
attn_weight = torch.softmax(attn_weight, dim=-1)
|
46 |
if dropout_p:
|
47 |
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
|
48 |
-
out = attn_weight.matmul(v)
|
49 |
out = rearrange(out, 'b h s d -> b s (h d)')
|
50 |
if needs_weights:
|
51 |
-
return (out, attn_weight)
|
52 |
-
return (out, None)
|
53 |
|
54 |
-
def check_valid_inputs(*tensors
|
|
|
|
|
55 |
for tensor in tensors:
|
56 |
if tensor.dtype not in valid_dtypes:
|
57 |
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
|
58 |
if not tensor.is_cuda:
|
59 |
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
60 |
|
61 |
-
def flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
62 |
try:
|
63 |
from flash_attn import bert_padding, flash_attn_interface
|
64 |
except:
|
65 |
-
raise RuntimeError('Please install flash-attn==1.0.3.
|
66 |
check_valid_inputs(query, key, value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
if attn_bias is not None:
|
68 |
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
69 |
(batch_size, seqlen) = query.shape[:2]
|
@@ -73,26 +136,58 @@ def flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None
|
|
73 |
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
|
74 |
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
75 |
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
|
76 |
-
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=
|
77 |
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
|
78 |
-
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=
|
79 |
-
if
|
80 |
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
|
81 |
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
|
|
|
|
|
|
|
82 |
dropout_p = dropout_p if training else 0.0
|
83 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
85 |
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
86 |
-
return (output, None)
|
87 |
|
88 |
-
def triton_flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
89 |
try:
|
90 |
-
from
|
91 |
except:
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
check_valid_inputs(query, key, value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
if dropout_p:
|
95 |
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
|
|
96 |
if needs_weights:
|
97 |
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
|
98 |
if key_padding_mask is not None:
|
@@ -102,136 +197,103 @@ def triton_flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bi
|
|
102 |
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
103 |
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
|
104 |
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
105 |
-
key = rearrange(key, 'b s (h d) -> b s h d', h=
|
106 |
-
value = rearrange(value, 'b s (h d) -> b s h d', h=
|
107 |
-
if
|
108 |
-
key = key.
|
109 |
-
value = value.
|
|
|
|
|
|
|
110 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
111 |
-
attn_output =
|
112 |
output = attn_output.view(*attn_output.shape[:2], -1)
|
113 |
-
return (output, None)
|
114 |
|
115 |
-
class
|
116 |
-
"""Multi-head
|
117 |
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
120 |
"""
|
121 |
|
122 |
-
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm:
|
123 |
super().__init__()
|
124 |
self.attn_impl = attn_impl
|
125 |
self.clip_qkv = clip_qkv
|
126 |
self.qk_ln = qk_ln
|
127 |
self.d_model = d_model
|
128 |
self.n_heads = n_heads
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
self.softmax_scale = softmax_scale
|
130 |
if self.softmax_scale is None:
|
131 |
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
132 |
self.attn_dropout_p = attn_pdrop
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
135 |
self.Wqkv._fused = (0, fuse_splits)
|
136 |
if self.qk_ln:
|
137 |
-
|
138 |
-
self.q_ln =
|
139 |
-
self.k_ln =
|
140 |
if self.attn_impl == 'flash':
|
141 |
self.attn_fn = flash_attn_fn
|
142 |
elif self.attn_impl == 'triton':
|
143 |
self.attn_fn = triton_flash_attn_fn
|
144 |
-
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
145 |
elif self.attn_impl == 'torch':
|
146 |
self.attn_fn = scaled_multihead_dot_product_attention
|
147 |
-
if torch.cuda.is_available():
|
148 |
-
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
149 |
else:
|
150 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
151 |
-
self.out_proj =
|
152 |
self.out_proj._is_residual = True
|
153 |
|
154 |
-
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
|
155 |
qkv = self.Wqkv(x)
|
156 |
if self.clip_qkv:
|
157 |
-
qkv.
|
158 |
-
(query, key, value) = qkv.
|
159 |
key_padding_mask = attention_mask
|
160 |
if self.qk_ln:
|
161 |
dtype = query.dtype
|
162 |
query = self.q_ln(query).to(dtype)
|
163 |
key = self.k_ln(key).to(dtype)
|
164 |
-
|
165 |
-
if len(past_key_value) != 0:
|
166 |
-
key = torch.cat([past_key_value[0], key], dim=1)
|
167 |
-
value = torch.cat([past_key_value[1], value], dim=1)
|
168 |
-
past_key_value = (key, value)
|
169 |
-
if attn_bias is not None:
|
170 |
-
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
171 |
-
(context, attn_weights) = self.attn_fn(query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights)
|
172 |
return (self.out_proj(context), attn_weights, past_key_value)
|
173 |
|
174 |
-
class
|
175 |
-
"""Multi-
|
176 |
|
177 |
-
Using torch or triton attention
|
178 |
additive bias.
|
179 |
"""
|
180 |
|
181 |
-
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm:
|
182 |
-
super().__init__()
|
183 |
-
self.attn_impl = attn_impl
|
184 |
-
self.clip_qkv = clip_qkv
|
185 |
-
self.qk_ln = qk_ln
|
186 |
-
self.d_model = d_model
|
187 |
-
self.n_heads = n_heads
|
188 |
-
self.head_dim = d_model // n_heads
|
189 |
-
self.softmax_scale = softmax_scale
|
190 |
-
if self.softmax_scale is None:
|
191 |
-
self.softmax_scale = 1 / math.sqrt(self.head_dim)
|
192 |
-
self.attn_dropout_p = attn_pdrop
|
193 |
-
self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
|
194 |
-
fuse_splits = (d_model, d_model + self.head_dim)
|
195 |
-
self.Wqkv._fused = (0, fuse_splits)
|
196 |
-
if self.qk_ln:
|
197 |
-
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
198 |
-
self.q_ln = layernorm_class(d_model, device=device)
|
199 |
-
self.k_ln = layernorm_class(self.head_dim, device=device)
|
200 |
-
if self.attn_impl == 'flash':
|
201 |
-
self.attn_fn = flash_attn_fn
|
202 |
-
elif self.attn_impl == 'triton':
|
203 |
-
self.attn_fn = triton_flash_attn_fn
|
204 |
-
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
205 |
-
elif self.attn_impl == 'torch':
|
206 |
-
self.attn_fn = scaled_multihead_dot_product_attention
|
207 |
-
if torch.cuda.is_available():
|
208 |
-
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
209 |
-
else:
|
210 |
-
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
211 |
-
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
212 |
-
self.out_proj._is_residual = True
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
key = self.k_ln(key).to(dtype)
|
224 |
-
if past_key_value is not None:
|
225 |
-
if len(past_key_value) != 0:
|
226 |
-
key = torch.cat([past_key_value[0], key], dim=1)
|
227 |
-
value = torch.cat([past_key_value[1], value], dim=1)
|
228 |
-
past_key_value = (key, value)
|
229 |
-
if attn_bias is not None:
|
230 |
-
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
231 |
-
(context, attn_weights) = self.attn_fn(query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True)
|
232 |
-
return (self.out_proj(context), attn_weights, past_key_value)
|
233 |
|
234 |
-
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
|
235 |
if attn_impl == 'flash':
|
236 |
return None
|
237 |
elif attn_impl in ['torch', 'triton']:
|
@@ -245,7 +307,7 @@ def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_s
|
|
245 |
else:
|
246 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
247 |
|
248 |
-
def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
|
249 |
if attn_impl == 'flash':
|
250 |
return None
|
251 |
elif attn_impl in ['torch', 'triton']:
|
@@ -256,7 +318,7 @@ def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=
|
|
256 |
else:
|
257 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
258 |
|
259 |
-
def gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
260 |
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
261 |
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
262 |
m = m.mul(alibi_bias_max / _n_heads)
|
@@ -265,7 +327,7 @@ def gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
|
265 |
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
266 |
return slopes.view(1, n_heads, 1, 1)
|
267 |
|
268 |
-
def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
|
269 |
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
|
270 |
if full:
|
271 |
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
|
@@ -273,4 +335,4 @@ def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None
|
|
273 |
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
274 |
alibi_bias = alibi_bias * slopes
|
275 |
return alibi_bias.to(dtype=dtype)
|
276 |
-
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention}
|
|
|
1 |
"""Attention layers."""
|
2 |
import math
|
3 |
import warnings
|
4 |
+
from typing import Any, List, Optional, Tuple
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from einops import rearrange
|
8 |
+
from packaging import version
|
9 |
from torch import nn
|
10 |
+
from .fc import FC_CLASS_REGISTRY
|
11 |
+
from .norm import NORM_CLASS_REGISTRY
|
12 |
|
13 |
+
def is_flash_v2_installed():
|
14 |
+
try:
|
15 |
+
import flash_attn as flash_attn
|
16 |
+
except:
|
17 |
+
return False
|
18 |
+
return version.parse(flash_attn.__version__) >= version.parse('2.0.0')
|
19 |
+
|
20 |
+
def is_flash_v1_installed():
|
21 |
+
try:
|
22 |
+
import flash_attn as flash_attn
|
23 |
+
except:
|
24 |
+
return False
|
25 |
+
return version.parse(flash_attn.__version__) < version.parse('2.0.0')
|
26 |
+
|
27 |
+
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool) -> bool:
|
28 |
if original_is_causal and num_query_tokens != num_key_tokens:
|
29 |
if num_query_tokens != 1:
|
30 |
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
|
|
|
32 |
return False
|
33 |
return original_is_causal
|
34 |
|
35 |
+
def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor:
|
36 |
+
"""Perform repeat of kv heads along a particular dimension.
|
37 |
+
|
38 |
+
hidden.shape expected to be: (batch size, seq len, kv_n_heads, head_dim)
|
39 |
+
n_rep: amount of repetitions of kv_n_heads
|
40 |
+
Unlike torch.repeat_interleave, this function avoids allocating new memory.
|
41 |
+
"""
|
42 |
+
if n_rep == 1:
|
43 |
+
return hidden
|
44 |
+
(b, s, kv_n_heads, d) = hidden.shape
|
45 |
+
hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d)
|
46 |
+
return hidden.reshape(b, s, kv_n_heads * n_rep, d)
|
47 |
+
|
48 |
+
def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
49 |
+
if multiquery:
|
50 |
+
warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
|
51 |
+
kv_n_heads = 1
|
52 |
+
elif kv_n_heads is None:
|
53 |
+
warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
|
54 |
+
kv_n_heads = n_heads
|
55 |
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
56 |
+
k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
|
57 |
+
v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
|
58 |
+
if past_key_value is not None:
|
59 |
+
if len(past_key_value) != 0:
|
60 |
+
k = torch.cat([past_key_value[0], k], dim=3)
|
61 |
+
v = torch.cat([past_key_value[1], v], dim=2)
|
62 |
+
past_key_value = (k, v)
|
63 |
(b, _, s_q, d) = q.shape
|
64 |
s_k = k.size(-1)
|
65 |
+
if kv_n_heads > 1 and kv_n_heads < n_heads:
|
66 |
+
k = repeat_kv_for_gqa(k.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
|
67 |
+
v = repeat_kv_for_gqa(v.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
|
68 |
if softmax_scale is None:
|
69 |
softmax_scale = 1 / math.sqrt(d)
|
70 |
attn_weight = q.matmul(k) * softmax_scale
|
71 |
if attn_bias is not None:
|
72 |
+
_s_q = max(0, attn_bias.size(2) - s_q)
|
73 |
+
_s_k = max(0, attn_bias.size(3) - s_k)
|
74 |
+
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
75 |
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
|
76 |
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
|
77 |
attn_weight = attn_weight + attn_bias
|
78 |
+
min_val = torch.finfo(q.dtype).min
|
79 |
if key_padding_mask is not None:
|
80 |
if attn_bias is not None:
|
81 |
+
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
82 |
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
83 |
+
if is_causal and (not q.size(2) == 1):
|
84 |
s = max(s_q, s_k)
|
85 |
+
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32)
|
86 |
causal_mask = causal_mask.tril()
|
87 |
causal_mask = causal_mask.to(torch.bool)
|
88 |
causal_mask = ~causal_mask
|
|
|
91 |
attn_weight = torch.softmax(attn_weight, dim=-1)
|
92 |
if dropout_p:
|
93 |
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
|
94 |
+
out = attn_weight.to(v.dtype).matmul(v)
|
95 |
out = rearrange(out, 'b h s d -> b s (h d)')
|
96 |
if needs_weights:
|
97 |
+
return (out, attn_weight, past_key_value)
|
98 |
+
return (out, None, past_key_value)
|
99 |
|
100 |
+
def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[List[torch.dtype]]=None):
|
101 |
+
if valid_dtypes is None:
|
102 |
+
valid_dtypes = [torch.float16, torch.bfloat16]
|
103 |
for tensor in tensors:
|
104 |
if tensor.dtype not in valid_dtypes:
|
105 |
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
|
106 |
if not tensor.is_cuda:
|
107 |
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
108 |
|
109 |
+
def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
110 |
try:
|
111 |
from flash_attn import bert_padding, flash_attn_interface
|
112 |
except:
|
113 |
+
raise RuntimeError('Please install flash-attn==1.0.9 or flash-attn==2.3.2')
|
114 |
check_valid_inputs(query, key, value)
|
115 |
+
if multiquery:
|
116 |
+
warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
|
117 |
+
kv_n_heads = 1
|
118 |
+
elif kv_n_heads is None:
|
119 |
+
warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
|
120 |
+
kv_n_heads = n_heads
|
121 |
+
if past_key_value is not None:
|
122 |
+
if len(past_key_value) != 0:
|
123 |
+
key = torch.cat([past_key_value[0], key], dim=1)
|
124 |
+
value = torch.cat([past_key_value[1], value], dim=1)
|
125 |
+
past_key_value = (key, value)
|
126 |
+
if attn_bias is not None:
|
127 |
+
_s_q = max(0, attn_bias.size(2) - query.size(1))
|
128 |
+
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
129 |
+
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
130 |
if attn_bias is not None:
|
131 |
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
132 |
(batch_size, seqlen) = query.shape[:2]
|
|
|
136 |
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
|
137 |
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
138 |
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
|
139 |
+
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
|
140 |
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
|
141 |
+
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
|
142 |
+
if kv_n_heads == 1:
|
143 |
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
|
144 |
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
|
145 |
+
elif kv_n_heads < n_heads:
|
146 |
+
key_unpad = repeat_kv_for_gqa(key_unpad.view(batch_size, seqlen, kv_n_heads, -1), n_heads // kv_n_heads).view(batch_size * seqlen, n_heads, -1)
|
147 |
+
value_unpad = repeat_kv_for_gqa(value_unpad.view(batch_size, seqlen, kv_n_heads, -1), n_heads // kv_n_heads).view(batch_size * seqlen, n_heads, -1)
|
148 |
dropout_p = dropout_p if training else 0.0
|
149 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
150 |
+
if is_flash_v1_installed():
|
151 |
+
output_unpad = flash_attn_interface.flash_attn_unpadded_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
152 |
+
elif is_flash_v2_installed():
|
153 |
+
output_unpad = flash_attn_interface.flash_attn_varlen_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
154 |
+
else:
|
155 |
+
raise RuntimeError('flash-attn==1.0.9 or flash-attn==2.3.2 is required.')
|
156 |
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
157 |
+
return (output, None, past_key_value)
|
158 |
|
159 |
+
def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
160 |
try:
|
161 |
+
from .flash_attn_triton import flash_attn_func
|
162 |
except:
|
163 |
+
_installed = False
|
164 |
+
if version.parse(torch.__version__) < version.parse('2.0.0'):
|
165 |
+
_installed = True
|
166 |
+
try:
|
167 |
+
from flash_attn.flash_attn_triton import flash_attn_func
|
168 |
+
except:
|
169 |
+
_installed = False
|
170 |
+
if not _installed:
|
171 |
+
raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' + 'and `pip install .[gpu]` if installing from llm-foundry source or ' + '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' + 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' + 'Note: (1) requires you have CMake and PyTorch already installed.')
|
172 |
check_valid_inputs(query, key, value)
|
173 |
+
if multiquery:
|
174 |
+
warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
|
175 |
+
kv_n_heads = 1
|
176 |
+
elif kv_n_heads is None:
|
177 |
+
warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
|
178 |
+
kv_n_heads = n_heads
|
179 |
+
if past_key_value is not None:
|
180 |
+
if len(past_key_value) != 0:
|
181 |
+
key = torch.cat([past_key_value[0], key], dim=1)
|
182 |
+
value = torch.cat([past_key_value[1], value], dim=1)
|
183 |
+
past_key_value = (key, value)
|
184 |
+
if attn_bias is not None:
|
185 |
+
_s_q = max(0, attn_bias.size(2) - query.size(1))
|
186 |
+
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
187 |
+
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
188 |
if dropout_p:
|
189 |
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
190 |
+
dropout_p = dropout_p if training else 0.0
|
191 |
if needs_weights:
|
192 |
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
|
193 |
if key_padding_mask is not None:
|
|
|
197 |
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
198 |
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
|
199 |
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
200 |
+
key = rearrange(key, 'b s (h d) -> b s h d', h=kv_n_heads)
|
201 |
+
value = rearrange(value, 'b s (h d) -> b s h d', h=kv_n_heads)
|
202 |
+
if kv_n_heads == 1:
|
203 |
+
key = key.repeat(1, 1, n_heads, 1)
|
204 |
+
value = value.repeat(1, 1, n_heads, 1)
|
205 |
+
elif kv_n_heads < n_heads:
|
206 |
+
key = repeat_kv_for_gqa(key, n_heads // kv_n_heads)
|
207 |
+
value = repeat_kv_for_gqa(value, n_heads // kv_n_heads)
|
208 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
209 |
+
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
210 |
output = attn_output.view(*attn_output.shape[:2], -1)
|
211 |
+
return (output, None, past_key_value)
|
212 |
|
213 |
+
class GroupedQueryAttention(nn.Module):
|
214 |
+
"""Grouped Query Attention (GQA) is a generalization of Multi-head (MHA).
|
215 |
|
216 |
+
and Multi-query attention (MQA).
|
217 |
+
|
218 |
+
This allows the user to set a variable of number of kv_n_heads, rather than
|
219 |
+
just n_heads or 1, as in MHA and MQA. Using torch or triton attention
|
220 |
+
implementation enables user to also use additive bias.
|
221 |
"""
|
222 |
|
223 |
+
def __init__(self, d_model: int, n_heads: int, kv_n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
|
224 |
super().__init__()
|
225 |
self.attn_impl = attn_impl
|
226 |
self.clip_qkv = clip_qkv
|
227 |
self.qk_ln = qk_ln
|
228 |
self.d_model = d_model
|
229 |
self.n_heads = n_heads
|
230 |
+
self.kv_n_heads = kv_n_heads
|
231 |
+
self.head_dim = d_model // n_heads
|
232 |
+
if self.kv_n_heads <= 0:
|
233 |
+
raise ValueError('kv_n_heads should be greater than zero.')
|
234 |
+
if self.kv_n_heads > self.n_heads:
|
235 |
+
raise ValueError('The number of KV heads should be less than or equal to Q heads.')
|
236 |
+
if self.n_heads % self.kv_n_heads != 0:
|
237 |
+
raise ValueError('Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads.')
|
238 |
self.softmax_scale = softmax_scale
|
239 |
if self.softmax_scale is None:
|
240 |
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
241 |
self.attn_dropout_p = attn_pdrop
|
242 |
+
fc_kwargs: dict[str, Any] = {'bias': bias}
|
243 |
+
if fc_type != 'te':
|
244 |
+
fc_kwargs['device'] = device
|
245 |
+
self.Wqkv = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model + 2 * self.kv_n_heads * self.head_dim, **fc_kwargs)
|
246 |
+
fuse_splits = [i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)]
|
247 |
self.Wqkv._fused = (0, fuse_splits)
|
248 |
if self.qk_ln:
|
249 |
+
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
250 |
+
self.q_ln = norm_class(self.d_model, device=device)
|
251 |
+
self.k_ln = norm_class(self.kv_n_heads * self.head_dim, device=device)
|
252 |
if self.attn_impl == 'flash':
|
253 |
self.attn_fn = flash_attn_fn
|
254 |
elif self.attn_impl == 'triton':
|
255 |
self.attn_fn = triton_flash_attn_fn
|
|
|
256 |
elif self.attn_impl == 'torch':
|
257 |
self.attn_fn = scaled_multihead_dot_product_attention
|
|
|
|
|
258 |
else:
|
259 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
260 |
+
self.out_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model, **fc_kwargs)
|
261 |
self.out_proj._is_residual = True
|
262 |
|
263 |
+
def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, is_causal: bool=True, needs_weights: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
264 |
qkv = self.Wqkv(x)
|
265 |
if self.clip_qkv:
|
266 |
+
qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
267 |
+
(query, key, value) = qkv.split([self.d_model, self.kv_n_heads * self.head_dim, self.kv_n_heads * self.head_dim], dim=2)
|
268 |
key_padding_mask = attention_mask
|
269 |
if self.qk_ln:
|
270 |
dtype = query.dtype
|
271 |
query = self.q_ln(query).to(dtype)
|
272 |
key = self.k_ln(key).to(dtype)
|
273 |
+
(context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, self.kv_n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
return (self.out_proj(context), attn_weights, past_key_value)
|
275 |
|
276 |
+
class MultiheadAttention(GroupedQueryAttention):
|
277 |
+
"""Multi-head self attention.
|
278 |
|
279 |
+
Using torch or triton attention implementation enables user to also use
|
280 |
additive bias.
|
281 |
"""
|
282 |
|
283 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
|
284 |
+
super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=n_heads, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
+
class MultiQueryAttention(GroupedQueryAttention):
|
287 |
+
"""Multi-Query self attention.
|
288 |
+
|
289 |
+
Using torch or triton attention implementation enables user to also use
|
290 |
+
additive bias.
|
291 |
+
"""
|
292 |
+
|
293 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
|
294 |
+
super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=1, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
+
def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, prefix_lm: bool, causal: bool, use_sequence_id: bool) -> Optional[Tuple[int, int, int, int]]:
|
297 |
if attn_impl == 'flash':
|
298 |
return None
|
299 |
elif attn_impl in ['torch', 'triton']:
|
|
|
307 |
else:
|
308 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
309 |
|
310 |
+
def build_attn_bias(attn_impl: str, attn_bias: torch.Tensor, n_heads: int, seq_len: int, causal: bool=False, alibi: bool=False, alibi_bias_max: int=8) -> Optional[torch.Tensor]:
|
311 |
if attn_impl == 'flash':
|
312 |
return None
|
313 |
elif attn_impl in ['torch', 'triton']:
|
|
|
318 |
else:
|
319 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
320 |
|
321 |
+
def gen_slopes(n_heads: int, alibi_bias_max: int=8, device: Optional[torch.device]=None) -> torch.Tensor:
|
322 |
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
323 |
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
324 |
m = m.mul(alibi_bias_max / _n_heads)
|
|
|
327 |
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
328 |
return slopes.view(1, n_heads, 1, 1)
|
329 |
|
330 |
+
def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_max: int=8, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None) -> torch.Tensor:
|
331 |
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
|
332 |
if full:
|
333 |
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
|
|
|
335 |
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
336 |
alibi_bias = alibi_bias * slopes
|
337 |
return alibi_bias.to(dtype=dtype)
|
338 |
+
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention, 'grouped_query_attention': GroupedQueryAttention}
|
blocks.py
CHANGED
@@ -1,41 +1,41 @@
|
|
1 |
"""GPT Blocks used for the GPT Model."""
|
2 |
-
from typing import Dict, Optional, Tuple
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
from .attention import ATTN_CLASS_REGISTRY
|
|
|
6 |
from .norm import NORM_CLASS_REGISTRY
|
7 |
|
8 |
-
class MPTMLP(nn.Module):
|
9 |
-
|
10 |
-
def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str]=None):
|
11 |
-
super().__init__()
|
12 |
-
self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device)
|
13 |
-
self.act = nn.GELU(approximate='none')
|
14 |
-
self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device)
|
15 |
-
self.down_proj._is_residual = True
|
16 |
-
|
17 |
-
def forward(self, x):
|
18 |
-
return self.down_proj(self.act(self.up_proj(x)))
|
19 |
-
|
20 |
class MPTBlock(nn.Module):
|
21 |
|
22 |
-
def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict=
|
|
|
|
|
|
|
|
|
23 |
del kwargs
|
24 |
super().__init__()
|
25 |
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
|
|
26 |
attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
|
|
|
|
|
27 |
self.norm_1 = norm_class(d_model, device=device)
|
28 |
-
self.attn = attn_class(
|
29 |
-
self.norm_2 =
|
30 |
-
|
|
|
|
|
31 |
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
32 |
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
33 |
|
34 |
-
def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:
|
35 |
a = self.norm_1(x)
|
36 |
-
(b,
|
37 |
x = x + self.resid_attn_dropout(b)
|
38 |
-
m =
|
|
|
|
|
39 |
n = self.ffn(m)
|
40 |
x = x + self.resid_ffn_dropout(n)
|
41 |
-
return (x, past_key_value)
|
|
|
1 |
"""GPT Blocks used for the GPT Model."""
|
2 |
+
from typing import Any, Dict, Optional, Tuple
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
from .attention import ATTN_CLASS_REGISTRY
|
6 |
+
from .ffn import FFN_CLASS_REGISTRY, build_ffn
|
7 |
from .norm import NORM_CLASS_REGISTRY
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
class MPTBlock(nn.Module):
|
10 |
|
11 |
+
def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Optional[Dict]=None, ffn_config: Optional[Dict]=None, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, no_bias: bool=False, **kwargs: Any):
|
12 |
+
if attn_config is None:
|
13 |
+
attn_config = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
|
14 |
+
if ffn_config is None:
|
15 |
+
ffn_config = {'ffn_type': 'mptmlp'}
|
16 |
del kwargs
|
17 |
super().__init__()
|
18 |
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
19 |
+
assert isinstance(attn_config['attn_type'], str)
|
20 |
attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
|
21 |
+
args_to_exclude_in_attn_class = {'attn_type', 'prefix_lm', 'alibi', 'attn_uses_sequence_id', 'alibi_bias_max'}
|
22 |
+
attn_config_subset_for_attn_class = {k: v for (k, v) in attn_config.items() if k not in args_to_exclude_in_attn_class}
|
23 |
self.norm_1 = norm_class(d_model, device=device)
|
24 |
+
self.attn = attn_class(d_model=d_model, n_heads=n_heads, fc_type=fc_type, device=device, **attn_config_subset_for_attn_class, bias=not no_bias)
|
25 |
+
self.norm_2 = None
|
26 |
+
if not getattr(FFN_CLASS_REGISTRY[ffn_config['ffn_type']], '_has_norm', False):
|
27 |
+
self.norm_2 = norm_class(d_model, device=device)
|
28 |
+
self.ffn = build_ffn(d_model=d_model, expansion_ratio=expansion_ratio, device=device, bias=not no_bias, **ffn_config)
|
29 |
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
30 |
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
31 |
|
32 |
+
def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True, output_attentions: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
33 |
a = self.norm_1(x)
|
34 |
+
(b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal, needs_weights=output_attentions)
|
35 |
x = x + self.resid_attn_dropout(b)
|
36 |
+
m = x
|
37 |
+
if self.norm_2 is not None:
|
38 |
+
m = self.norm_2(x)
|
39 |
n = self.ffn(m)
|
40 |
x = x + self.resid_ffn_dropout(n)
|
41 |
+
return (x, attn_weights, past_key_value)
|
configuration_mpt.py
CHANGED
@@ -1,27 +1,29 @@
|
|
1 |
"""A HuggingFace-style model configuration."""
|
2 |
-
|
|
|
3 |
from transformers import PretrainedConfig
|
4 |
attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
|
5 |
-
|
|
|
6 |
|
7 |
class MPTConfig(PretrainedConfig):
|
8 |
model_type = 'mpt'
|
9 |
|
10 |
-
def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False,
|
11 |
"""The MPT configuration class.
|
12 |
|
13 |
Args:
|
14 |
d_model (int): The size of the embedding dimension of the model.
|
15 |
n_heads (int): The number of attention heads.
|
16 |
n_layers (int): The number of layers in the model.
|
17 |
-
expansion_ratio (int): The ratio of the up/down scale in the
|
18 |
max_seq_len (int): The maximum sequence length of the model.
|
19 |
vocab_size (int): The size of the vocabulary.
|
20 |
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
21 |
emb_pdrop (float): The dropout probability for the embedding layer.
|
22 |
learned_pos_emb (bool): Whether to use learned positional embeddings
|
23 |
-
attn_config (Dict):
|
24 |
-
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention
|
25 |
attn_pdrop (float): The dropout probability for the attention layers.
|
26 |
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
27 |
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
@@ -38,13 +40,15 @@ class MPTConfig(PretrainedConfig):
|
|
38 |
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
39 |
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
40 |
alibi_bias_max (int): The maximum value of the alibi bias.
|
|
|
|
|
|
|
41 |
init_device (str): The device to use for parameter initialization.
|
42 |
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
43 |
no_bias (bool): Whether to use bias in all layers.
|
44 |
verbose (int): The verbosity level. 0 is silent.
|
45 |
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
46 |
norm_type (str): choose type of norm to use
|
47 |
-
multiquery_attention (bool): Whether to use multiquery attention implementation.
|
48 |
use_cache (bool): Whether or not the model should return the last key/values attentions
|
49 |
init_config (Dict): A dictionary used to configure the model initialization:
|
50 |
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
|
@@ -61,6 +65,7 @@ class MPTConfig(PretrainedConfig):
|
|
61 |
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
62 |
---
|
63 |
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
|
|
|
64 |
"""
|
65 |
self.d_model = d_model
|
66 |
self.n_heads = n_heads
|
@@ -72,29 +77,36 @@ class MPTConfig(PretrainedConfig):
|
|
72 |
self.emb_pdrop = emb_pdrop
|
73 |
self.learned_pos_emb = learned_pos_emb
|
74 |
self.attn_config = attn_config
|
|
|
75 |
self.init_device = init_device
|
76 |
self.logit_scale = logit_scale
|
77 |
self.no_bias = no_bias
|
78 |
-
self.verbose = verbose
|
79 |
self.embedding_fraction = embedding_fraction
|
80 |
self.norm_type = norm_type
|
81 |
self.use_cache = use_cache
|
82 |
self.init_config = init_config
|
|
|
|
|
|
|
83 |
if 'name' in kwargs:
|
84 |
del kwargs['name']
|
85 |
if 'loss_fn' in kwargs:
|
86 |
del kwargs['loss_fn']
|
|
|
|
|
|
|
87 |
super().__init__(**kwargs)
|
88 |
self._validate_config()
|
89 |
|
90 |
-
def _set_config_defaults(self, config, config_defaults):
|
91 |
for (k, v) in config_defaults.items():
|
92 |
if k not in config:
|
93 |
config[k] = v
|
94 |
return config
|
95 |
|
96 |
-
def _validate_config(self):
|
97 |
self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
|
|
|
98 |
self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
|
99 |
if self.d_model % self.n_heads != 0:
|
100 |
raise ValueError('d_model must be divisible by n_heads')
|
@@ -115,4 +127,14 @@ class MPTConfig(PretrainedConfig):
|
|
115 |
if self.init_config.get('name', None) is None:
|
116 |
raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
|
117 |
if not self.learned_pos_emb and (not self.attn_config['alibi']):
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""A HuggingFace-style model configuration."""
|
2 |
+
import warnings
|
3 |
+
from typing import Any, Dict, Optional, Union
|
4 |
from transformers import PretrainedConfig
|
5 |
attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
|
6 |
+
ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
|
7 |
+
init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
|
8 |
|
9 |
class MPTConfig(PretrainedConfig):
|
10 |
model_type = 'mpt'
|
11 |
|
12 |
+
def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, ffn_config: Dict=ffn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, fc_type: str='torch', verbose: Optional[int]=None, **kwargs: Any):
|
13 |
"""The MPT configuration class.
|
14 |
|
15 |
Args:
|
16 |
d_model (int): The size of the embedding dimension of the model.
|
17 |
n_heads (int): The number of attention heads.
|
18 |
n_layers (int): The number of layers in the model.
|
19 |
+
expansion_ratio (int): The ratio of the up/down scale in the ffn.
|
20 |
max_seq_len (int): The maximum sequence length of the model.
|
21 |
vocab_size (int): The size of the vocabulary.
|
22 |
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
23 |
emb_pdrop (float): The dropout probability for the embedding layer.
|
24 |
learned_pos_emb (bool): Whether to use learned positional embeddings
|
25 |
+
attn_config (Dict): A dictionary used to configure the model's attention module:
|
26 |
+
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention, grouped_query_attention
|
27 |
attn_pdrop (float): The dropout probability for the attention layers.
|
28 |
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
29 |
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
|
|
40 |
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
41 |
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
42 |
alibi_bias_max (int): The maximum value of the alibi bias.
|
43 |
+
kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
|
44 |
+
ffn_config (Dict): A dictionary used to configure the model's ffn module:
|
45 |
+
ffn_type (str): type of ffn to use. Options: mptmlp, te_ln_mlp
|
46 |
init_device (str): The device to use for parameter initialization.
|
47 |
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
48 |
no_bias (bool): Whether to use bias in all layers.
|
49 |
verbose (int): The verbosity level. 0 is silent.
|
50 |
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
51 |
norm_type (str): choose type of norm to use
|
|
|
52 |
use_cache (bool): Whether or not the model should return the last key/values attentions
|
53 |
init_config (Dict): A dictionary used to configure the model initialization:
|
54 |
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
|
|
|
65 |
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
66 |
---
|
67 |
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
|
68 |
+
fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
|
69 |
"""
|
70 |
self.d_model = d_model
|
71 |
self.n_heads = n_heads
|
|
|
77 |
self.emb_pdrop = emb_pdrop
|
78 |
self.learned_pos_emb = learned_pos_emb
|
79 |
self.attn_config = attn_config
|
80 |
+
self.ffn_config = ffn_config
|
81 |
self.init_device = init_device
|
82 |
self.logit_scale = logit_scale
|
83 |
self.no_bias = no_bias
|
|
|
84 |
self.embedding_fraction = embedding_fraction
|
85 |
self.norm_type = norm_type
|
86 |
self.use_cache = use_cache
|
87 |
self.init_config = init_config
|
88 |
+
self.fc_type = fc_type
|
89 |
+
if verbose is not None:
|
90 |
+
warnings.warn(DeprecationWarning('verbose argument for MPTConfig is now ignored and will be removed. Use python_log_level instead.'))
|
91 |
if 'name' in kwargs:
|
92 |
del kwargs['name']
|
93 |
if 'loss_fn' in kwargs:
|
94 |
del kwargs['loss_fn']
|
95 |
+
if self.attn_config.get('alibi', False):
|
96 |
+
self.learned_pos_emb = False
|
97 |
+
warnings.warn(f'alibi is turned on, setting `learned_pos_emb` to `False.`')
|
98 |
super().__init__(**kwargs)
|
99 |
self._validate_config()
|
100 |
|
101 |
+
def _set_config_defaults(self, config: Dict[str, Any], config_defaults: Dict[str, Any]) -> Dict[str, Any]:
|
102 |
for (k, v) in config_defaults.items():
|
103 |
if k not in config:
|
104 |
config[k] = v
|
105 |
return config
|
106 |
|
107 |
+
def _validate_config(self) -> None:
|
108 |
self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
|
109 |
+
self.ffn_config = self._set_config_defaults(self.ffn_config, ffn_config_defaults)
|
110 |
self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
|
111 |
if self.d_model % self.n_heads != 0:
|
112 |
raise ValueError('d_model must be divisible by n_heads')
|
|
|
127 |
if self.init_config.get('name', None) is None:
|
128 |
raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
|
129 |
if not self.learned_pos_emb and (not self.attn_config['alibi']):
|
130 |
+
warnings.warn(f'Positional information not being provided to the model using either learned_pos_emb or alibi.')
|
131 |
+
if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
|
132 |
+
try:
|
133 |
+
import transformer_engine.pytorch as te
|
134 |
+
del te
|
135 |
+
except:
|
136 |
+
raise ImportError('TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. ' + 'The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n' + 'pip install flash-attn==1.0.6 --no-build-isolation \n' + 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156')
|
137 |
+
if self.ffn_config['ffn_type'] == 'mptmlp':
|
138 |
+
self.ffn_config['fc_type'] = self.fc_type
|
139 |
+
elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
|
140 |
+
self.ffn_config['bias'] = not self.no_bias
|
custom_embedding.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import Tensor
|
4 |
+
|
5 |
+
class SharedEmbedding(nn.Embedding):
|
6 |
+
|
7 |
+
def forward(self, input: Tensor, unembed: bool=False) -> Tensor:
|
8 |
+
if unembed:
|
9 |
+
return F.linear(input, self.weight)
|
10 |
+
return super().forward(input)
|
fc.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
FC_CLASS_REGISTRY = {'torch': nn.Linear}
|
3 |
+
try:
|
4 |
+
import transformer_engine.pytorch as te
|
5 |
+
FC_CLASS_REGISTRY['te'] = te.Linear
|
6 |
+
except:
|
7 |
+
pass
|
ffn.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""GPT Blocks used for the GPT Model."""
|
2 |
+
from typing import Any, Optional
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from .fc import FC_CLASS_REGISTRY
|
6 |
+
try:
|
7 |
+
import transformer_engine.pytorch as te
|
8 |
+
except:
|
9 |
+
te = None
|
10 |
+
|
11 |
+
class MPTMLP(nn.Module):
|
12 |
+
|
13 |
+
def __init__(self, d_model: int, expansion_ratio: int, fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
|
14 |
+
super().__init__()
|
15 |
+
fc_kwargs: dict[str, Any] = {'bias': bias}
|
16 |
+
if fc_type != 'te':
|
17 |
+
fc_kwargs['device'] = device
|
18 |
+
self.up_proj = FC_CLASS_REGISTRY[fc_type](d_model, expansion_ratio * d_model, **fc_kwargs)
|
19 |
+
self.act = nn.GELU(approximate='none')
|
20 |
+
self.down_proj = FC_CLASS_REGISTRY[fc_type](expansion_ratio * d_model, d_model, **fc_kwargs)
|
21 |
+
self.down_proj._is_residual = True
|
22 |
+
|
23 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
24 |
+
return self.down_proj(self.act(self.up_proj(x)))
|
25 |
+
FFN_CLASS_REGISTRY = {'mptmlp': MPTMLP}
|
26 |
+
if te is not None:
|
27 |
+
te.LayerNormMLP._has_norm = True
|
28 |
+
FFN_CLASS_REGISTRY['te_ln_mlp'] = te.LayerNormMLP
|
29 |
+
|
30 |
+
def build_ffn(d_model: int, expansion_ratio: int, fc_type: str='torch', device: Optional[str]=None, bias: bool=True, **kwargs: Any) -> nn.Module:
|
31 |
+
ffn_type = kwargs.pop('ffn_type')
|
32 |
+
if ffn_type == 'mptmlp':
|
33 |
+
if len(kwargs) > 0:
|
34 |
+
raise ValueError(f'MPTMLP got an unexpected keyword argument: {kwargs}')
|
35 |
+
return MPTMLP(d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, device=device, bias=bias)
|
36 |
+
elif ffn_type == 'te_ln_mlp':
|
37 |
+
assert te is not None
|
38 |
+
return te.LayerNormMLP(hidden_size=d_model, ffn_hidden_size=d_model * expansion_ratio, bias=bias, **kwargs)
|
39 |
+
raise ValueError(f'ffn_type={ffn_type!r} not recognized.')
|
flash_attn_triton.py
ADDED
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
|
3 |
+
update imports to use 'triton_pre_mlir'
|
4 |
+
|
5 |
+
*Experimental* implementation of FlashAttention in Triton.
|
6 |
+
Tested with triton==2.0.0.dev20221202.
|
7 |
+
Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
|
8 |
+
other than 64:
|
9 |
+
https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
|
10 |
+
We'll update this implementation with the new Triton backend once this is fixed.
|
11 |
+
|
12 |
+
We use the FlashAttention implementation from Phil Tillet a starting point.
|
13 |
+
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
14 |
+
|
15 |
+
Changes:
|
16 |
+
- Implement both causal and non-causal attention.
|
17 |
+
- Implement both self-attention and cross-attention.
|
18 |
+
- Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
|
19 |
+
- Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
|
20 |
+
- Support attention bias.
|
21 |
+
- Speed up the forward pass a bit, and only store the LSE instead of m and l.
|
22 |
+
- Make the backward for d=128 much faster by reducing register spilling.
|
23 |
+
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of
|
24 |
+
small batch size * nheads.
|
25 |
+
|
26 |
+
Caution:
|
27 |
+
- This is an *experimental* implementation. The forward pass should be quite robust but
|
28 |
+
I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
|
29 |
+
- This implementation has only been tested on A100.
|
30 |
+
- If you plan to use headdim other than 64 and 128, you should test for race conditions
|
31 |
+
(due to the Triton compiler), as done in tests/test_flash_attn.py
|
32 |
+
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
33 |
+
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
34 |
+
that there are none left for other head dimensions.
|
35 |
+
|
36 |
+
Differences between this Triton version and the CUDA version:
|
37 |
+
- Triton version doesn't support dropout.
|
38 |
+
- Triton forward is generally faster than CUDA forward, while Triton backward is
|
39 |
+
generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
|
40 |
+
than CUDA forward + backward.
|
41 |
+
- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
|
42 |
+
- Triton version supports attention bias, while CUDA version doesn't.
|
43 |
+
"""
|
44 |
+
import math
|
45 |
+
import torch
|
46 |
+
import triton_pre_mlir as triton
|
47 |
+
import triton_pre_mlir.language as tl
|
48 |
+
|
49 |
+
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
|
50 |
+
@triton.jit
|
51 |
+
def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
|
52 |
+
start_m = tl.program_id(0)
|
53 |
+
off_hb = tl.program_id(1)
|
54 |
+
off_b = off_hb // nheads
|
55 |
+
off_h = off_hb % nheads
|
56 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
57 |
+
offs_n = tl.arange(0, BLOCK_N)
|
58 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
59 |
+
q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
|
60 |
+
k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
61 |
+
v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
62 |
+
if BIAS_TYPE == 'vector':
|
63 |
+
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
64 |
+
elif BIAS_TYPE == 'matrix':
|
65 |
+
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
|
66 |
+
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
67 |
+
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
|
68 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
|
69 |
+
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
70 |
+
if EVEN_M & EVEN_N:
|
71 |
+
if EVEN_HEADDIM:
|
72 |
+
q = tl.load(q_ptrs)
|
73 |
+
else:
|
74 |
+
q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
75 |
+
elif EVEN_HEADDIM:
|
76 |
+
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
77 |
+
else:
|
78 |
+
q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
79 |
+
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
80 |
+
for start_n in range(0, end_n, BLOCK_N):
|
81 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
82 |
+
if EVEN_N & EVEN_M:
|
83 |
+
if EVEN_HEADDIM:
|
84 |
+
k = tl.load(k_ptrs + start_n * stride_kn)
|
85 |
+
else:
|
86 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
|
87 |
+
elif EVEN_HEADDIM:
|
88 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
|
89 |
+
else:
|
90 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
91 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
92 |
+
qk += tl.dot(q, k, trans_b=True)
|
93 |
+
if not EVEN_N:
|
94 |
+
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float('-inf'))
|
95 |
+
if IS_CAUSAL:
|
96 |
+
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float('-inf'))
|
97 |
+
if BIAS_TYPE != 'none':
|
98 |
+
if BIAS_TYPE == 'vector':
|
99 |
+
if EVEN_N:
|
100 |
+
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
101 |
+
else:
|
102 |
+
bias = tl.load(b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0).to(tl.float32)
|
103 |
+
bias = bias[None, :]
|
104 |
+
elif BIAS_TYPE == 'matrix':
|
105 |
+
if EVEN_M & EVEN_N:
|
106 |
+
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
107 |
+
else:
|
108 |
+
bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32)
|
109 |
+
qk = qk * softmax_scale + bias
|
110 |
+
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
|
111 |
+
p = tl.exp(qk - m_ij[:, None])
|
112 |
+
else:
|
113 |
+
m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
|
114 |
+
p = tl.exp(qk * softmax_scale - m_ij[:, None])
|
115 |
+
l_ij = tl.sum(p, 1)
|
116 |
+
acc_o_scale = tl.exp(m_i - m_ij)
|
117 |
+
tl.store(t_ptrs, acc_o_scale)
|
118 |
+
acc_o_scale = tl.load(t_ptrs)
|
119 |
+
acc_o = acc_o * acc_o_scale[:, None]
|
120 |
+
if EVEN_N & EVEN_M:
|
121 |
+
if EVEN_HEADDIM:
|
122 |
+
v = tl.load(v_ptrs + start_n * stride_vn)
|
123 |
+
else:
|
124 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
|
125 |
+
elif EVEN_HEADDIM:
|
126 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
|
127 |
+
else:
|
128 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
129 |
+
p = p.to(v.dtype)
|
130 |
+
acc_o += tl.dot(p, v)
|
131 |
+
m_i = m_ij
|
132 |
+
l_i_new = tl.exp(lse_i - m_ij) + l_ij
|
133 |
+
lse_i = m_ij + tl.log(l_i_new)
|
134 |
+
o_scale = tl.exp(m_i - lse_i)
|
135 |
+
tl.store(t_ptrs, o_scale)
|
136 |
+
o_scale = tl.load(t_ptrs)
|
137 |
+
acc_o = acc_o * o_scale[:, None]
|
138 |
+
start_m = tl.program_id(0)
|
139 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
140 |
+
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
141 |
+
tl.store(lse_ptrs, lse_i)
|
142 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
143 |
+
out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
|
144 |
+
if EVEN_M:
|
145 |
+
if EVEN_HEADDIM:
|
146 |
+
tl.store(out_ptrs, acc_o)
|
147 |
+
else:
|
148 |
+
tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
|
149 |
+
elif EVEN_HEADDIM:
|
150 |
+
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
151 |
+
else:
|
152 |
+
tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
153 |
+
|
154 |
+
@triton.jit
|
155 |
+
def _bwd_preprocess_do_o_dot(Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr):
|
156 |
+
start_m = tl.program_id(0)
|
157 |
+
off_hb = tl.program_id(1)
|
158 |
+
off_b = off_hb // nheads
|
159 |
+
off_h = off_hb % nheads
|
160 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
161 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
162 |
+
o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
|
163 |
+
do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
|
164 |
+
delta = tl.sum(o * do, axis=1)
|
165 |
+
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
|
166 |
+
|
167 |
+
@triton.jit
|
168 |
+
def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr):
|
169 |
+
if EVEN_N & EVEN_M:
|
170 |
+
if EVEN_HEADDIM:
|
171 |
+
tl.store(dv_ptrs, dv)
|
172 |
+
tl.store(dk_ptrs, dk)
|
173 |
+
else:
|
174 |
+
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
|
175 |
+
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
|
176 |
+
elif EVEN_HEADDIM:
|
177 |
+
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
178 |
+
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
179 |
+
else:
|
180 |
+
tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
181 |
+
tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
182 |
+
|
183 |
+
@triton.jit
|
184 |
+
def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
|
185 |
+
begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
|
186 |
+
offs_qm = begin_m + tl.arange(0, BLOCK_M)
|
187 |
+
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
188 |
+
offs_m = tl.arange(0, BLOCK_M)
|
189 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
190 |
+
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
|
191 |
+
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
192 |
+
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
193 |
+
do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
|
194 |
+
dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
|
195 |
+
if BIAS_TYPE == 'vector':
|
196 |
+
b_ptrs = Bias + offs_n
|
197 |
+
elif BIAS_TYPE == 'matrix':
|
198 |
+
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
|
199 |
+
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
200 |
+
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
201 |
+
if begin_m >= seqlen_q:
|
202 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
203 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
204 |
+
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
|
205 |
+
return
|
206 |
+
if EVEN_N & EVEN_M:
|
207 |
+
if EVEN_HEADDIM:
|
208 |
+
k = tl.load(k_ptrs)
|
209 |
+
v = tl.load(v_ptrs)
|
210 |
+
else:
|
211 |
+
k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
212 |
+
v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
213 |
+
elif EVEN_HEADDIM:
|
214 |
+
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
215 |
+
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
216 |
+
else:
|
217 |
+
k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
218 |
+
v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
219 |
+
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
|
220 |
+
for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
|
221 |
+
start_m = tl.multiple_of(start_m, BLOCK_M)
|
222 |
+
offs_m_curr = start_m + offs_m
|
223 |
+
if EVEN_M & EVEN_HEADDIM:
|
224 |
+
q = tl.load(q_ptrs)
|
225 |
+
elif EVEN_HEADDIM:
|
226 |
+
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
227 |
+
else:
|
228 |
+
q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
229 |
+
qk = tl.dot(q, k, trans_b=True)
|
230 |
+
if not EVEN_N:
|
231 |
+
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf'))
|
232 |
+
if IS_CAUSAL:
|
233 |
+
qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float('-inf'))
|
234 |
+
if BIAS_TYPE != 'none':
|
235 |
+
tl.debug_barrier()
|
236 |
+
if BIAS_TYPE == 'vector':
|
237 |
+
if EVEN_N:
|
238 |
+
bias = tl.load(b_ptrs).to(tl.float32)
|
239 |
+
else:
|
240 |
+
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
|
241 |
+
bias = bias[None, :]
|
242 |
+
elif BIAS_TYPE == 'matrix':
|
243 |
+
if EVEN_M & EVEN_N:
|
244 |
+
bias = tl.load(b_ptrs).to(tl.float32)
|
245 |
+
else:
|
246 |
+
bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32)
|
247 |
+
qk = qk * softmax_scale + bias
|
248 |
+
if not EVEN_M & EVEN_HEADDIM:
|
249 |
+
tl.debug_barrier()
|
250 |
+
lse_i = tl.load(LSE + offs_m_curr)
|
251 |
+
if BIAS_TYPE == 'none':
|
252 |
+
p = tl.exp(qk * softmax_scale - lse_i[:, None])
|
253 |
+
else:
|
254 |
+
p = tl.exp(qk - lse_i[:, None])
|
255 |
+
if EVEN_M & EVEN_HEADDIM:
|
256 |
+
do = tl.load(do_ptrs)
|
257 |
+
else:
|
258 |
+
do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
259 |
+
dv += tl.dot(p.to(do.dtype), do, trans_a=True)
|
260 |
+
if not EVEN_M & EVEN_HEADDIM:
|
261 |
+
tl.debug_barrier()
|
262 |
+
dp = tl.dot(do, v, trans_b=True)
|
263 |
+
if not EVEN_HEADDIM:
|
264 |
+
tl.debug_barrier()
|
265 |
+
Di = tl.load(D + offs_m_curr)
|
266 |
+
ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
|
267 |
+
dk += tl.dot(ds, q, trans_a=True)
|
268 |
+
if not EVEN_M & EVEN_HEADDIM:
|
269 |
+
tl.debug_barrier()
|
270 |
+
if not ATOMIC_ADD:
|
271 |
+
if EVEN_M & EVEN_HEADDIM:
|
272 |
+
dq = tl.load(dq_ptrs, eviction_policy='evict_last')
|
273 |
+
dq += tl.dot(ds, k)
|
274 |
+
tl.store(dq_ptrs, dq, eviction_policy='evict_last')
|
275 |
+
elif EVEN_HEADDIM:
|
276 |
+
dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy='evict_last')
|
277 |
+
dq += tl.dot(ds, k)
|
278 |
+
tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy='evict_last')
|
279 |
+
else:
|
280 |
+
dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy='evict_last')
|
281 |
+
dq += tl.dot(ds, k)
|
282 |
+
tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy='evict_last')
|
283 |
+
else:
|
284 |
+
dq = tl.dot(ds, k)
|
285 |
+
if EVEN_M & EVEN_HEADDIM:
|
286 |
+
tl.atomic_add(dq_ptrs, dq)
|
287 |
+
elif EVEN_HEADDIM:
|
288 |
+
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
|
289 |
+
else:
|
290 |
+
tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
291 |
+
dq_ptrs += BLOCK_M * stride_dqm
|
292 |
+
q_ptrs += BLOCK_M * stride_qm
|
293 |
+
do_ptrs += BLOCK_M * stride_dom
|
294 |
+
if BIAS_TYPE == 'matrix':
|
295 |
+
b_ptrs += BLOCK_M * stride_bm
|
296 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
297 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
298 |
+
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
|
299 |
+
|
300 |
+
def init_to_zero(name):
|
301 |
+
return lambda nargs: nargs[name].zero_()
|
302 |
+
|
303 |
+
@triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ'))], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'])
|
304 |
+
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
|
305 |
+
@triton.jit
|
306 |
+
def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
|
307 |
+
off_hb = tl.program_id(1)
|
308 |
+
off_b = off_hb // nheads
|
309 |
+
off_h = off_hb % nheads
|
310 |
+
Q += off_b * stride_qb + off_h * stride_qh
|
311 |
+
K += off_b * stride_kb + off_h * stride_kh
|
312 |
+
V += off_b * stride_vb + off_h * stride_vh
|
313 |
+
DO += off_b * stride_dob + off_h * stride_doh
|
314 |
+
DQ += off_b * stride_dqb + off_h * stride_dqh
|
315 |
+
DK += off_b * stride_dkb + off_h * stride_dkh
|
316 |
+
DV += off_b * stride_dvb + off_h * stride_dvh
|
317 |
+
if BIAS_TYPE != 'none':
|
318 |
+
Bias += off_b * stride_bb + off_h * stride_bh
|
319 |
+
D += off_hb * seqlen_q_rounded
|
320 |
+
LSE += off_hb * seqlen_q_rounded
|
321 |
+
if not SEQUENCE_PARALLEL:
|
322 |
+
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
|
323 |
+
for start_n in range(0, num_block_n):
|
324 |
+
_bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
|
325 |
+
else:
|
326 |
+
start_n = tl.program_id(0)
|
327 |
+
_bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
|
328 |
+
|
329 |
+
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
330 |
+
(batch, seqlen_q, nheads, d) = q.shape
|
331 |
+
(_, seqlen_k, _, _) = k.shape
|
332 |
+
assert k.shape == (batch, seqlen_k, nheads, d)
|
333 |
+
assert v.shape == (batch, seqlen_k, nheads, d)
|
334 |
+
assert d <= 128, 'FlashAttention only support head dimensions up to 128'
|
335 |
+
assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
|
336 |
+
assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
|
337 |
+
assert q.is_cuda and k.is_cuda and v.is_cuda
|
338 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
339 |
+
has_bias = bias is not None
|
340 |
+
bias_type = 'none'
|
341 |
+
if has_bias:
|
342 |
+
assert bias.dtype in [q.dtype, torch.float]
|
343 |
+
assert bias.is_cuda
|
344 |
+
assert bias.dim() == 4
|
345 |
+
if bias.stride(-1) != 1:
|
346 |
+
bias = bias.contiguous()
|
347 |
+
if bias.shape[2:] == (1, seqlen_k):
|
348 |
+
bias_type = 'vector'
|
349 |
+
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
350 |
+
bias_type = 'matrix'
|
351 |
+
else:
|
352 |
+
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
|
353 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
354 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
355 |
+
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
356 |
+
lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
357 |
+
tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
358 |
+
o = torch.empty_like(q)
|
359 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
360 |
+
BLOCK = 128
|
361 |
+
num_warps = 4 if d <= 64 else 8
|
362 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
|
363 |
+
_fwd_kernel[grid](q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1)
|
364 |
+
return (o, lse, softmax_scale)
|
365 |
+
|
366 |
+
def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
|
367 |
+
if do.stride(-1) != 1:
|
368 |
+
do = do.contiguous()
|
369 |
+
(batch, seqlen_q, nheads, d) = q.shape
|
370 |
+
(_, seqlen_k, _, _) = k.shape
|
371 |
+
assert d <= 128
|
372 |
+
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
373 |
+
assert lse.shape == (batch, nheads, seqlen_q_rounded)
|
374 |
+
assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
|
375 |
+
assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
|
376 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
377 |
+
dq_accum = torch.empty_like(q, dtype=torch.float32)
|
378 |
+
delta = torch.empty_like(lse)
|
379 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
380 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
|
381 |
+
_bwd_preprocess_do_o_dot[grid](o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM)
|
382 |
+
has_bias = bias is not None
|
383 |
+
bias_type = 'none'
|
384 |
+
if has_bias:
|
385 |
+
assert bias.dtype in [q.dtype, torch.float]
|
386 |
+
assert bias.is_cuda
|
387 |
+
assert bias.dim() == 4
|
388 |
+
assert bias.stride(-1) == 1
|
389 |
+
if bias.shape[2:] == (1, seqlen_k):
|
390 |
+
bias_type = 'vector'
|
391 |
+
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
392 |
+
bias_type = 'matrix'
|
393 |
+
else:
|
394 |
+
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
|
395 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
396 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
397 |
+
grid = lambda META: (triton.cdiv(seqlen_k, META['BLOCK_N']) if META['SEQUENCE_PARALLEL'] else 1, batch * nheads)
|
398 |
+
_bwd_kernel[grid](q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM)
|
399 |
+
dq.copy_(dq_accum)
|
400 |
+
|
401 |
+
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
402 |
+
|
403 |
+
@staticmethod
|
404 |
+
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
|
405 |
+
"""
|
406 |
+
qkv: (batch, seqlen, 3, nheads, headdim)
|
407 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
|
408 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
|
409 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
|
410 |
+
"""
|
411 |
+
if qkv.stride(-1) != 1:
|
412 |
+
qkv = qkv.contiguous()
|
413 |
+
(o, lse, ctx.softmax_scale) = _flash_attn_forward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale)
|
414 |
+
ctx.save_for_backward(qkv, o, lse, bias)
|
415 |
+
ctx.causal = causal
|
416 |
+
return o
|
417 |
+
|
418 |
+
@staticmethod
|
419 |
+
def backward(ctx, do):
|
420 |
+
(qkv, o, lse, bias) = ctx.saved_tensors
|
421 |
+
assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet'
|
422 |
+
with torch.inference_mode():
|
423 |
+
dqkv = torch.empty_like(qkv)
|
424 |
+
_flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
425 |
+
return (dqkv, None, None, None)
|
426 |
+
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
|
427 |
+
|
428 |
+
class FlashAttnKVPackedFunc(torch.autograd.Function):
|
429 |
+
|
430 |
+
@staticmethod
|
431 |
+
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
|
432 |
+
"""
|
433 |
+
q: (batch, seqlen_q, nheads, headdim)
|
434 |
+
kv: (batch, seqlen_k, 2, nheads, headdim)
|
435 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
436 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
437 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
438 |
+
"""
|
439 |
+
(q, kv) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
|
440 |
+
(o, lse, ctx.softmax_scale) = _flash_attn_forward(q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale)
|
441 |
+
ctx.save_for_backward(q, kv, o, lse, bias)
|
442 |
+
ctx.causal = causal
|
443 |
+
return o
|
444 |
+
|
445 |
+
@staticmethod
|
446 |
+
def backward(ctx, do):
|
447 |
+
(q, kv, o, lse, bias) = ctx.saved_tensors
|
448 |
+
if len(ctx.needs_input_grad) >= 3:
|
449 |
+
assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet'
|
450 |
+
with torch.inference_mode():
|
451 |
+
dq = torch.empty_like(q)
|
452 |
+
dkv = torch.empty_like(kv)
|
453 |
+
_flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
454 |
+
return (dq, dkv, None, None, None)
|
455 |
+
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
|
456 |
+
|
457 |
+
class FlashAttnFunc(torch.autograd.Function):
|
458 |
+
|
459 |
+
@staticmethod
|
460 |
+
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
|
461 |
+
"""
|
462 |
+
q: (batch_size, seqlen_q, nheads, headdim)
|
463 |
+
k, v: (batch_size, seqlen_k, nheads, headdim)
|
464 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
465 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
466 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
467 |
+
"""
|
468 |
+
(q, k, v) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
|
469 |
+
(o, lse, ctx.softmax_scale) = _flash_attn_forward(q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
|
470 |
+
ctx.save_for_backward(q, k, v, o, lse, bias)
|
471 |
+
ctx.causal = causal
|
472 |
+
return o
|
473 |
+
|
474 |
+
@staticmethod
|
475 |
+
def backward(ctx, do):
|
476 |
+
(q, k, v, o, lse, bias) = ctx.saved_tensors
|
477 |
+
assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet'
|
478 |
+
with torch.inference_mode():
|
479 |
+
dq = torch.empty_like(q)
|
480 |
+
dk = torch.empty_like(k)
|
481 |
+
dv = torch.empty_like(v)
|
482 |
+
_flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
483 |
+
return (dq, dk, dv, None, None, None)
|
484 |
+
flash_attn_func = FlashAttnFunc.apply
|
generation_config.json
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
3 |
"transformers_version": "4.28.1",
|
|
|
4 |
"use_cache": false
|
5 |
}
|
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
3 |
"transformers_version": "4.28.1",
|
4 |
+
"eos_token_id": 0,
|
5 |
"use_cache": false
|
6 |
}
|
hf_prefixlm_converter.py
CHANGED
@@ -6,23 +6,13 @@ Causal LM to convert it to a Prefix LM.
|
|
6 |
Prefix LMs accepts a `bidirectional_mask` input in `forward`
|
7 |
and treat the input prompt as the prefix in `generate`.
|
8 |
"""
|
9 |
-
import math
|
10 |
-
import warnings
|
11 |
from types import MethodType
|
12 |
-
from typing import Any,
|
13 |
import torch
|
14 |
-
from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
|
15 |
-
from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
|
16 |
-
from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom
|
17 |
-
from transformers.models.bloom.modeling_bloom import logging
|
18 |
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
19 |
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
|
20 |
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
|
21 |
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
|
22 |
-
from transformers.models.opt.modeling_opt import OPTForCausalLM
|
23 |
-
from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt
|
24 |
-
from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt
|
25 |
-
logger = logging.get_logger(__name__)
|
26 |
_SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
|
27 |
CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
|
28 |
|
@@ -90,13 +80,14 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
|
|
90 |
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
|
91 |
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
|
92 |
for attn_module in attn_modules:
|
|
|
93 |
attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
|
94 |
output = call_og_forward()
|
95 |
for attn_module in attn_modules:
|
96 |
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
97 |
return output
|
98 |
|
99 |
-
def generate(self: CAUSAL_GPT_TYPES, *args:
|
100 |
"""Wraps original generate to enable PrefixLM attention."""
|
101 |
attn_modules = _get_attn_modules(model)
|
102 |
for attn_module in attn_modules:
|
@@ -109,228 +100,8 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
|
|
109 |
setattr(model, 'generate', MethodType(generate, model))
|
110 |
setattr(model, '_prefix_lm_converted', True)
|
111 |
return model
|
112 |
-
|
113 |
-
|
114 |
-
"""Converts a BLOOM Causal LM to a Prefix LM.
|
115 |
-
|
116 |
-
Supported HuggingFace model classes:
|
117 |
-
- `BloomForCausalLM`
|
118 |
-
|
119 |
-
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
120 |
-
"""
|
121 |
-
if hasattr(model, '_prefix_lm_converted'):
|
122 |
-
return model
|
123 |
-
assert isinstance(model, BloomForCausalLM)
|
124 |
-
assert model.config.add_cross_attention == False, 'Only supports BLOOM decoder-only models'
|
125 |
-
|
126 |
-
def _prepare_attn_mask(self: BloomModel, attention_mask: torch.Tensor, bidirectional_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], past_key_values_length: int) -> torch.BoolTensor:
|
127 |
-
combined_attention_mask = None
|
128 |
-
device = attention_mask.device
|
129 |
-
(_, src_length) = input_shape
|
130 |
-
if src_length > 1:
|
131 |
-
combined_attention_mask = _make_causal_mask_bloom(input_shape, device=device, past_key_values_length=past_key_values_length)
|
132 |
-
if bidirectional_mask is not None:
|
133 |
-
assert attention_mask.shape == bidirectional_mask.shape
|
134 |
-
expanded_bidirectional_mask = _expand_mask_bloom(bidirectional_mask, tgt_length=src_length)
|
135 |
-
combined_attention_mask = torch.logical_and(combined_attention_mask, expanded_bidirectional_mask)
|
136 |
-
expanded_attn_mask = _expand_mask_bloom(attention_mask, tgt_length=src_length)
|
137 |
-
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
138 |
-
return combined_attention_mask
|
139 |
-
|
140 |
-
def _build_alibi_tensor(self: BloomModel, batch_size: int, query_length: int, key_length: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
|
141 |
-
num_heads = self.config.n_head
|
142 |
-
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
143 |
-
base = torch.tensor(2 ** (-2 ** (-(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
144 |
-
powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32)
|
145 |
-
slopes = torch.pow(base, powers)
|
146 |
-
if closest_power_of_2 != num_heads:
|
147 |
-
extra_base = torch.tensor(2 ** (-2 ** (-(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
148 |
-
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
149 |
-
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32)
|
150 |
-
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
151 |
-
qa = torch.arange(query_length, device=device, dtype=torch.int32).view(-1, 1)
|
152 |
-
ka = torch.arange(key_length, device=device, dtype=torch.int32).view(1, -1)
|
153 |
-
diffs = qa - ka + key_length - query_length
|
154 |
-
diffs = -diffs.abs()
|
155 |
-
alibi = slopes.view(1, num_heads, 1, 1) * diffs.view(1, 1, query_length, key_length)
|
156 |
-
alibi = alibi.expand(batch_size, -1, -1, -1).reshape(-1, query_length, key_length)
|
157 |
-
return alibi.to(dtype)
|
158 |
-
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
159 |
-
|
160 |
-
def forward(self: BloomModel, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
161 |
-
if deprecated_arguments.pop('position_ids', False) is not False:
|
162 |
-
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning)
|
163 |
-
if len(deprecated_arguments) > 0:
|
164 |
-
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
165 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
166 |
-
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
167 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
168 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
169 |
-
if input_ids is not None and inputs_embeds is not None:
|
170 |
-
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
171 |
-
elif input_ids is not None:
|
172 |
-
(batch_size, seq_length) = input_ids.shape
|
173 |
-
elif inputs_embeds is not None:
|
174 |
-
(batch_size, seq_length, _) = inputs_embeds.shape
|
175 |
-
else:
|
176 |
-
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
177 |
-
if past_key_values is None:
|
178 |
-
past_key_values = tuple([None] * len(self.h))
|
179 |
-
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
180 |
-
if inputs_embeds is None:
|
181 |
-
inputs_embeds = self.word_embeddings(input_ids)
|
182 |
-
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
183 |
-
presents = () if use_cache else None
|
184 |
-
all_self_attentions = () if output_attentions else None
|
185 |
-
all_hidden_states = () if output_hidden_states else None
|
186 |
-
seq_length_with_past = seq_length
|
187 |
-
past_key_values_length = 0
|
188 |
-
if past_key_values[0] is not None:
|
189 |
-
tmp = past_key_values[0][0]
|
190 |
-
past_key_values_length = tmp.shape[2]
|
191 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
192 |
-
if attention_mask is None:
|
193 |
-
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
194 |
-
else:
|
195 |
-
attention_mask = attention_mask.to(hidden_states.device)
|
196 |
-
alibi = self._build_alibi_tensor(batch_size=batch_size, query_length=seq_length, key_length=seq_length_with_past, dtype=hidden_states.dtype, device=hidden_states.device)
|
197 |
-
causal_mask = self._prepare_attn_mask(attention_mask, bidirectional_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length)
|
198 |
-
for (i, (block, layer_past)) in enumerate(zip(self.h, past_key_values)):
|
199 |
-
if output_hidden_states:
|
200 |
-
hst = (hidden_states,)
|
201 |
-
all_hidden_states = all_hidden_states + hst
|
202 |
-
if self.gradient_checkpointing and self.training:
|
203 |
-
if use_cache:
|
204 |
-
logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...')
|
205 |
-
use_cache = False
|
206 |
-
|
207 |
-
def create_custom_forward(module):
|
208 |
-
|
209 |
-
def custom_forward(*inputs):
|
210 |
-
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
211 |
-
return custom_forward
|
212 |
-
outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i])
|
213 |
-
else:
|
214 |
-
outputs = block(hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi)
|
215 |
-
hidden_states = outputs[0]
|
216 |
-
if use_cache is True:
|
217 |
-
presents = presents + (outputs[1],)
|
218 |
-
if output_attentions:
|
219 |
-
oa = (outputs[2 if use_cache else 1],)
|
220 |
-
all_self_attentions = all_self_attentions + oa
|
221 |
-
hidden_states = self.ln_f(hidden_states)
|
222 |
-
if output_hidden_states:
|
223 |
-
hst = (hidden_states,)
|
224 |
-
all_hidden_states = all_hidden_states + hst
|
225 |
-
if not return_dict:
|
226 |
-
return tuple((v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None))
|
227 |
-
return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions)
|
228 |
-
setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer))
|
229 |
-
setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer))
|
230 |
-
setattr(model.transformer, 'forward', MethodType(forward, model.transformer))
|
231 |
-
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
232 |
-
|
233 |
-
def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
234 |
-
"""Replacement forward method for BloomCausalLM."""
|
235 |
-
if deprecated_arguments.pop('position_ids', False) is not False:
|
236 |
-
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning)
|
237 |
-
if len(deprecated_arguments) > 0:
|
238 |
-
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
239 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
240 |
-
transformer_outputs = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, bidirectional_mask=bidirectional_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
241 |
-
hidden_states = transformer_outputs[0]
|
242 |
-
lm_logits = self.lm_head(hidden_states)
|
243 |
-
loss = None
|
244 |
-
if labels is not None:
|
245 |
-
shift_logits = lm_logits[..., :-1, :].contiguous()
|
246 |
-
shift_labels = labels[..., 1:].contiguous()
|
247 |
-
(batch_size, seq_length, vocab_size) = shift_logits.shape
|
248 |
-
loss_fct = CrossEntropyLoss()
|
249 |
-
loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length))
|
250 |
-
if not return_dict:
|
251 |
-
output = (lm_logits,) + transformer_outputs[1:]
|
252 |
-
return (loss,) + output if loss is not None else output
|
253 |
-
return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions)
|
254 |
-
|
255 |
-
def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs) -> dict:
|
256 |
-
if past:
|
257 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
258 |
-
bidirectional_mask = None
|
259 |
-
if past[0][0].shape[0] == input_ids.shape[0]:
|
260 |
-
past = self._convert_to_bloom_cache(past)
|
261 |
-
else:
|
262 |
-
bidirectional_mask = torch.ones_like(input_ids)
|
263 |
-
return {'input_ids': input_ids, 'past_key_values': past, 'use_cache': True, 'attention_mask': attention_mask, 'bidirectional_mask': bidirectional_mask}
|
264 |
-
setattr(model, 'forward', MethodType(forward, model))
|
265 |
-
setattr(model, 'prepare_inputs_for_generation', MethodType(prepare_inputs_for_generation, model))
|
266 |
-
setattr(model, '_prefix_lm_converted', True)
|
267 |
-
return model
|
268 |
-
|
269 |
-
def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM:
|
270 |
-
"""Converts an OPT Causal LM to a Prefix LM.
|
271 |
-
|
272 |
-
Supported HuggingFace model classes:
|
273 |
-
- `OPTForCausalLM`
|
274 |
-
|
275 |
-
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
276 |
-
"""
|
277 |
-
if hasattr(model, '_prefix_lm_converted'):
|
278 |
-
return model
|
279 |
-
assert isinstance(model, OPTForCausalLM)
|
280 |
-
assert model.config.add_cross_attention == False, 'Only supports OPT decoder-only models'
|
281 |
-
setattr(model, '_original_forward', getattr(model, 'forward'))
|
282 |
-
setattr(model, '_original_generate', getattr(model, 'generate'))
|
283 |
-
model.model.decoder.bidirectional_mask = None
|
284 |
-
|
285 |
-
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
286 |
-
combined_attention_mask = None
|
287 |
-
if input_shape[-1] > 1:
|
288 |
-
if self.bidirectional_mask == 'g':
|
289 |
-
(bsz, src_length) = input_shape
|
290 |
-
combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
291 |
-
else:
|
292 |
-
combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device)
|
293 |
-
if self.bidirectional_mask is not None:
|
294 |
-
assert attention_mask.shape == self.bidirectional_mask.shape
|
295 |
-
expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
296 |
-
combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask)
|
297 |
-
if attention_mask is not None:
|
298 |
-
expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
299 |
-
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
300 |
-
return combined_attention_mask
|
301 |
-
setattr(model.model.decoder, '_prepare_decoder_attention_mask', MethodType(_prepare_decoder_attention_mask, model.model.decoder))
|
302 |
-
|
303 |
-
def forward(self: OPTForCausalLM, input_ids: Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.ByteTensor]=None, head_mask: Optional[torch.Tensor]=None, past_key_values: Optional[List[torch.FloatTensor]]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
|
304 |
-
|
305 |
-
def call_og_forward():
|
306 |
-
return self._original_forward(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
307 |
-
if bidirectional_mask is None:
|
308 |
-
return call_og_forward()
|
309 |
-
self.model.decoder.bidirectional_mask = bidirectional_mask
|
310 |
-
try:
|
311 |
-
outputs = call_og_forward()
|
312 |
-
except:
|
313 |
-
self.model.decoder.bidirectional_mask = None
|
314 |
-
raise
|
315 |
-
self.model.decoder.bidirectional_mask = None
|
316 |
-
return outputs
|
317 |
-
|
318 |
-
def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Dict[str, Any]):
|
319 |
-
"""Wraps original generate to enable PrefixLM-style attention."""
|
320 |
-
self.model.decoder.bidirectional_mask = 'g'
|
321 |
-
try:
|
322 |
-
output = self._original_generate(*args, **kwargs)
|
323 |
-
except:
|
324 |
-
self.model.decoder.bidirectional_mask = None
|
325 |
-
raise
|
326 |
-
self.model.decoder.bidirectional_mask = None
|
327 |
-
return output
|
328 |
-
setattr(model, 'forward', MethodType(forward, model))
|
329 |
-
setattr(model, 'generate', MethodType(generate, model))
|
330 |
-
setattr(model, '_prefix_lm_converted', True)
|
331 |
-
return model
|
332 |
-
_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM, OPTForCausalLM)
|
333 |
-
CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM, BloomForCausalLM, OPTForCausalLM]
|
334 |
|
335 |
def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
|
336 |
"""Converts a HuggingFace Causal LM to a Prefix LM.
|
@@ -340,8 +111,6 @@ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES
|
|
340 |
- `GPTNeoForCausalLM`
|
341 |
- `GPTNeoXForCausalLM`
|
342 |
- `GPTJForCausalLM`
|
343 |
-
- `BloomForCausalLM`
|
344 |
-
- `OPTForCausalLM`
|
345 |
|
346 |
Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
|
347 |
`generate` method and/or select underlying methods depending on the model class.
|
@@ -391,14 +160,10 @@ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES
|
|
391 |
"""
|
392 |
if isinstance(model, _SUPPORTED_GPT_MODELS):
|
393 |
return _convert_gpt_causal_lm_to_prefix_lm(model)
|
394 |
-
elif isinstance(model, BloomForCausalLM):
|
395 |
-
return _convert_bloom_causal_lm_to_prefix_lm(model)
|
396 |
-
elif isinstance(model, OPTForCausalLM):
|
397 |
-
return _convert_opt_causal_lm_to_prefix_lm(model)
|
398 |
else:
|
399 |
raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
|
400 |
|
401 |
-
def add_bidirectional_mask_if_missing(batch:
|
402 |
"""Attempts to add bidirectional_mask to batch if missing.
|
403 |
|
404 |
Raises:
|
|
|
6 |
Prefix LMs accepts a `bidirectional_mask` input in `forward`
|
7 |
and treat the input prompt as the prefix in `generate`.
|
8 |
"""
|
|
|
|
|
9 |
from types import MethodType
|
10 |
+
from typing import Any, List, MutableMapping, Optional, Tuple, Union
|
11 |
import torch
|
|
|
|
|
|
|
|
|
12 |
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
13 |
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
|
14 |
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
|
15 |
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
|
|
|
|
|
|
|
|
|
16 |
_SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
|
17 |
CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
|
18 |
|
|
|
80 |
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
|
81 |
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
|
82 |
for attn_module in attn_modules:
|
83 |
+
assert isinstance(attn_module.bias, torch.Tensor)
|
84 |
attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
|
85 |
output = call_og_forward()
|
86 |
for attn_module in attn_modules:
|
87 |
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
88 |
return output
|
89 |
|
90 |
+
def generate(self: CAUSAL_GPT_TYPES, *args: Any, **kwargs: Any):
|
91 |
"""Wraps original generate to enable PrefixLM attention."""
|
92 |
attn_modules = _get_attn_modules(model)
|
93 |
for attn_module in attn_modules:
|
|
|
100 |
setattr(model, 'generate', MethodType(generate, model))
|
101 |
setattr(model, '_prefix_lm_converted', True)
|
102 |
return model
|
103 |
+
_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS
|
104 |
+
CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
|
107 |
"""Converts a HuggingFace Causal LM to a Prefix LM.
|
|
|
111 |
- `GPTNeoForCausalLM`
|
112 |
- `GPTNeoXForCausalLM`
|
113 |
- `GPTJForCausalLM`
|
|
|
|
|
114 |
|
115 |
Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
|
116 |
`generate` method and/or select underlying methods depending on the model class.
|
|
|
160 |
"""
|
161 |
if isinstance(model, _SUPPORTED_GPT_MODELS):
|
162 |
return _convert_gpt_causal_lm_to_prefix_lm(model)
|
|
|
|
|
|
|
|
|
163 |
else:
|
164 |
raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
|
165 |
|
166 |
+
def add_bidirectional_mask_if_missing(batch: MutableMapping):
|
167 |
"""Attempts to add bidirectional_mask to batch if missing.
|
168 |
|
169 |
Raises:
|
meta_init_context.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from contextlib import contextmanager
|
|
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
|
@@ -57,25 +58,29 @@ def init_on_device(device: torch.device, include_buffers: bool=False):
|
|
57 |
if include_buffers:
|
58 |
old_register_buffer = nn.Module.register_buffer
|
59 |
|
60 |
-
def register_empty_parameter(
|
61 |
-
old_register_parameter(
|
62 |
if param is not None:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
if include_buffers:
|
72 |
tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
|
73 |
else:
|
74 |
tensor_constructors_to_patch = {}
|
75 |
|
76 |
-
def patch_tensor_constructor(fn):
|
77 |
|
78 |
-
def wrapper(*args, **kwargs):
|
79 |
kwargs['device'] = device
|
80 |
return fn(*args, **kwargs)
|
81 |
return wrapper
|
|
|
1 |
from contextlib import contextmanager
|
2 |
+
from typing import Any, Callable, Optional
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
|
|
|
58 |
if include_buffers:
|
59 |
old_register_buffer = nn.Module.register_buffer
|
60 |
|
61 |
+
def register_empty_parameter(self: torch.nn.Module, name: str, param: Optional[torch.nn.Parameter]):
|
62 |
+
old_register_parameter(self, name, param)
|
63 |
if param is not None:
|
64 |
+
parameter = self._parameters[name]
|
65 |
+
assert parameter is not None
|
66 |
+
param_cls = type(parameter)
|
67 |
+
kwargs = parameter.__dict__
|
68 |
+
self._parameters[name] = param_cls(parameter.to(device), **kwargs)
|
69 |
+
|
70 |
+
def register_empty_buffer(self: torch.nn.Module, name: str, tensor: Optional[torch.Tensor], persistent: bool=True):
|
71 |
+
old_register_buffer(self, name, tensor, persistent=persistent)
|
72 |
+
if tensor is not None:
|
73 |
+
named_buffer = self._buffers[name]
|
74 |
+
assert named_buffer is not None
|
75 |
+
self._buffers[name] = named_buffer.to(device)
|
76 |
if include_buffers:
|
77 |
tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
|
78 |
else:
|
79 |
tensor_constructors_to_patch = {}
|
80 |
|
81 |
+
def patch_tensor_constructor(fn: Callable):
|
82 |
|
83 |
+
def wrapper(*args: Any, **kwargs: Any):
|
84 |
kwargs['device'] = device
|
85 |
return fn(*args, **kwargs)
|
86 |
return wrapper
|
modeling_mpt.py
CHANGED
@@ -4,55 +4,66 @@ Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
|
4 |
"""
|
5 |
import math
|
6 |
import warnings
|
7 |
-
from typing import List, Optional, Tuple, Union
|
8 |
import torch
|
9 |
import torch.nn as nn
|
10 |
import torch.nn.functional as F
|
11 |
-
from transformers import PreTrainedModel,
|
12 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
from .attention import attn_bias_shape, build_attn_bias
|
14 |
from .blocks import MPTBlock
|
|
|
|
|
|
|
|
|
|
|
15 |
from .norm import NORM_CLASS_REGISTRY
|
16 |
from .configuration_mpt import MPTConfig
|
17 |
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
18 |
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
19 |
from .meta_init_context import init_empty_weights
|
20 |
-
from .param_init_fns import
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
class MPTPreTrainedModel(PreTrainedModel):
|
24 |
config_class = MPTConfig
|
25 |
base_model_prefix = 'model'
|
26 |
-
_no_split_modules = [
|
27 |
-
supports_gradient_checkpointing = True
|
28 |
-
|
29 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
30 |
-
if isinstance(module, MPTModel):
|
31 |
-
module.gradient_checkpointing = value
|
32 |
|
33 |
class MPTModel(MPTPreTrainedModel):
|
34 |
|
35 |
def __init__(self, config: MPTConfig):
|
36 |
config._validate_config()
|
37 |
super().__init__(config)
|
38 |
-
self.gradient_checkpointing = False
|
39 |
self.attn_impl = config.attn_config['attn_impl']
|
40 |
self.prefix_lm = config.attn_config['prefix_lm']
|
41 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
42 |
self.alibi = config.attn_config['alibi']
|
43 |
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
45 |
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
46 |
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
47 |
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
48 |
self.embedding_fraction = config.embedding_fraction
|
49 |
-
self.wte =
|
50 |
-
if
|
51 |
-
self.wpe = nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
52 |
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
53 |
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
54 |
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
55 |
if config.init_device != 'meta':
|
|
|
56 |
self.apply(self.param_init_fn)
|
57 |
self.is_causal = not self.prefix_lm
|
58 |
self._attn_bias_initialized = False
|
@@ -61,25 +72,22 @@ class MPTModel(MPTPreTrainedModel):
|
|
61 |
if config.no_bias:
|
62 |
for module in self.modules():
|
63 |
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
64 |
-
|
65 |
-
warnings.warn(f'Removing bias ({module.bias}) from {module}.')
|
66 |
module.register_parameter('bias', None)
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
init_fn_name = self.config.init_config['name']
|
73 |
-
warnings.warn(f'Using {init_fn_name} initialization.')
|
74 |
|
75 |
-
def get_input_embeddings(self):
|
76 |
return self.wte
|
77 |
|
78 |
-
def set_input_embeddings(self, value):
|
79 |
self.wte = value
|
80 |
|
81 |
@torch.no_grad()
|
82 |
-
def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None):
|
83 |
if not self._attn_bias_initialized:
|
84 |
if self.attn_bias_shape:
|
85 |
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
@@ -102,14 +110,15 @@ class MPTModel(MPTPreTrainedModel):
|
|
102 |
if attn_bias is None:
|
103 |
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
|
104 |
else:
|
105 |
-
|
|
|
106 |
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
|
107 |
raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
|
108 |
min_val = torch.finfo(attn_bias.dtype).min
|
109 |
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
|
110 |
return (attn_bias, None)
|
111 |
|
112 |
-
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
|
113 |
(s_k, s_q) = attn_bias.shape[-2:]
|
114 |
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
115 |
raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
|
@@ -124,7 +133,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
124 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
125 |
return attn_bias
|
126 |
|
127 |
-
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor):
|
128 |
seq_len = sequence_id.shape[-1]
|
129 |
if seq_len > self.config.max_seq_len:
|
130 |
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
@@ -134,122 +143,86 @@ class MPTModel(MPTPreTrainedModel):
|
|
134 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
135 |
return attn_bias
|
136 |
|
137 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.
|
138 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
139 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
140 |
-
if self.gradient_checkpointing and self.training:
|
141 |
-
if use_cache:
|
142 |
-
use_cache = False
|
143 |
-
if input_ids is not None and inputs_embeds is not None:
|
144 |
-
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
145 |
-
elif input_ids is not None:
|
146 |
-
batch_size, seq_length = input_ids.shape
|
147 |
-
elif inputs_embeds is not None:
|
148 |
-
batch_size, seq_length, _ = inputs_embeds.shape
|
149 |
-
else:
|
150 |
-
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
151 |
-
|
152 |
-
seq_length_with_past = seq_length
|
153 |
-
past_key_values_length = 0
|
154 |
-
|
155 |
-
if past_key_values is not None:
|
156 |
-
past_key_values_length = past_key_values[0][0].shape[2]
|
157 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
158 |
-
|
159 |
if attention_mask is not None:
|
160 |
attention_mask = attention_mask.bool()
|
161 |
-
else:
|
162 |
-
attention_mask = torch.ones(
|
163 |
-
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
164 |
-
)
|
165 |
-
|
166 |
-
if inputs_embeds is None:
|
167 |
-
tok_emb = self.wte(input_ids)
|
168 |
-
else:
|
169 |
-
tok_emb = inputs_embeds
|
170 |
-
|
171 |
if prefix_mask is not None:
|
172 |
prefix_mask = prefix_mask.bool()
|
173 |
if not return_dict:
|
174 |
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
175 |
if output_attentions:
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
179 |
if self.prefix_lm and prefix_mask is None:
|
180 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
|
|
|
|
181 |
if self.training:
|
182 |
if self.attn_uses_sequence_id and sequence_id is None:
|
183 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
184 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
185 |
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
186 |
-
S =
|
187 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
188 |
-
|
189 |
-
|
190 |
-
else:
|
191 |
past_position = 0
|
192 |
if past_key_values is not None:
|
193 |
if len(past_key_values) != self.config.n_layers:
|
194 |
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
195 |
past_position = past_key_values[0][0].size(1)
|
|
|
|
|
196 |
if S + past_position > self.config.max_seq_len:
|
197 |
-
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
198 |
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
199 |
-
if attention_mask is not None
|
200 |
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
201 |
pos_emb = self.wpe(pos)
|
202 |
x = tok_emb + pos_emb
|
|
|
|
|
203 |
if self.embedding_fraction == 1:
|
204 |
x = self.emb_drop(x)
|
205 |
else:
|
206 |
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
207 |
assert isinstance(self.emb_drop, nn.Module)
|
208 |
x = self.emb_drop(x_shrunk)
|
209 |
-
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=
|
|
|
210 |
if use_cache and past_key_values is None:
|
211 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
212 |
-
|
213 |
all_hidden_states = () if output_hidden_states else None
|
|
|
214 |
for (b_idx, block) in enumerate(self.blocks):
|
215 |
if output_hidden_states:
|
216 |
assert all_hidden_states is not None
|
217 |
all_hidden_states = all_hidden_states + (x,)
|
218 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
219 |
-
|
220 |
-
if
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
return module(*inputs)
|
226 |
-
|
227 |
-
return custom_forward
|
228 |
-
|
229 |
-
(x, past_key_value) = torch.utils.checkpoint.checkpoint(
|
230 |
-
create_custom_forward(block),
|
231 |
-
x,
|
232 |
-
past_key_value,
|
233 |
-
attn_bias,
|
234 |
-
attention_mask,
|
235 |
-
self.is_causal,
|
236 |
-
)
|
237 |
-
else:
|
238 |
-
(x, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
|
239 |
-
|
240 |
-
if past_key_values is not None:
|
241 |
-
past_key_values[b_idx] = past_key_value
|
242 |
x = self.norm_f(x)
|
243 |
-
|
|
|
|
|
|
|
244 |
|
245 |
-
def param_init_fn(self, module):
|
246 |
init_fn_name = self.config.init_config['name']
|
247 |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
248 |
|
249 |
-
def fsdp_wrap_fn(self, module):
|
250 |
return isinstance(module, MPTBlock)
|
251 |
|
252 |
-
def activation_checkpointing_fn(self, module):
|
253 |
return isinstance(module, MPTBlock)
|
254 |
|
255 |
class MPTForCausalLM(MPTPreTrainedModel):
|
@@ -258,7 +231,13 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
258 |
super().__init__(config)
|
259 |
if not config.tie_word_embeddings:
|
260 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
self.logit_scale = None
|
263 |
if config.logit_scale is not None:
|
264 |
logit_scale = config.logit_scale
|
@@ -269,51 +248,53 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
269 |
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
270 |
self.logit_scale = logit_scale
|
271 |
|
272 |
-
def get_input_embeddings(self):
|
273 |
return self.transformer.wte
|
274 |
|
275 |
-
def set_input_embeddings(self, value):
|
276 |
self.transformer.wte = value
|
277 |
|
278 |
-
def get_output_embeddings(self):
|
279 |
return self.transformer.wte
|
280 |
|
281 |
-
def set_output_embeddings(self, new_embeddings):
|
282 |
self.transformer.wte = new_embeddings
|
283 |
|
284 |
-
def set_decoder(self, decoder):
|
285 |
self.transformer = decoder
|
286 |
|
287 |
-
def get_decoder(self):
|
288 |
return self.transformer
|
289 |
|
290 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]
|
291 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
292 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
293 |
-
|
294 |
-
|
|
|
|
|
295 |
if self.logit_scale is not None:
|
296 |
if self.logit_scale == 0:
|
297 |
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
298 |
logits *= self.logit_scale
|
299 |
loss = None
|
300 |
if labels is not None:
|
301 |
-
|
302 |
-
|
303 |
-
loss = F.cross_entropy(logits.view(-1, logits.size(-1)),
|
304 |
-
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states)
|
305 |
|
306 |
-
def param_init_fn(self, module):
|
307 |
init_fn_name = self.config.init_config['name']
|
308 |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
309 |
|
310 |
-
def fsdp_wrap_fn(self, module):
|
311 |
return isinstance(module, MPTBlock)
|
312 |
|
313 |
-
def activation_checkpointing_fn(self, module):
|
314 |
return isinstance(module, MPTBlock)
|
315 |
|
316 |
-
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
317 |
if inputs_embeds is not None:
|
318 |
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
319 |
attention_mask = kwargs['attention_mask'].bool()
|
@@ -334,7 +315,7 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
334 |
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
|
335 |
|
336 |
@staticmethod
|
337 |
-
def _reorder_cache(past_key_values, beam_idx):
|
338 |
"""Used by HuggingFace generate when using beam search with kv-caching.
|
339 |
|
340 |
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
|
|
4 |
"""
|
5 |
import math
|
6 |
import warnings
|
7 |
+
from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union
|
8 |
import torch
|
9 |
import torch.nn as nn
|
10 |
import torch.nn.functional as F
|
11 |
+
from transformers import PreTrainedModel, PreTrainedTokenizerBase
|
12 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
from .attention import attn_bias_shape, build_attn_bias
|
14 |
from .blocks import MPTBlock
|
15 |
+
from .custom_embedding import SharedEmbedding
|
16 |
+
from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
|
17 |
+
from .ffn import FFN_CLASS_REGISTRY as FFN_CLASS_REGISTRY
|
18 |
+
from .ffn import MPTMLP as MPTMLP
|
19 |
+
from .ffn import build_ffn as build_ffn
|
20 |
from .norm import NORM_CLASS_REGISTRY
|
21 |
from .configuration_mpt import MPTConfig
|
22 |
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
23 |
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
24 |
from .meta_init_context import init_empty_weights
|
25 |
+
from .param_init_fns import generic_param_init_fn_, MODEL_INIT_REGISTRY
|
26 |
+
try:
|
27 |
+
from .flash_attn_triton import flash_attn_func as flash_attn_func
|
28 |
+
except:
|
29 |
+
pass
|
30 |
+
import logging
|
31 |
+
log = logging.getLogger(__name__)
|
32 |
|
33 |
class MPTPreTrainedModel(PreTrainedModel):
|
34 |
config_class = MPTConfig
|
35 |
base_model_prefix = 'model'
|
36 |
+
_no_split_modules = ['MPTBlock']
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
class MPTModel(MPTPreTrainedModel):
|
39 |
|
40 |
def __init__(self, config: MPTConfig):
|
41 |
config._validate_config()
|
42 |
super().__init__(config)
|
|
|
43 |
self.attn_impl = config.attn_config['attn_impl']
|
44 |
self.prefix_lm = config.attn_config['prefix_lm']
|
45 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
46 |
self.alibi = config.attn_config['alibi']
|
47 |
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
48 |
+
self.learned_pos_emb = config.learned_pos_emb
|
49 |
+
if config.init_device == 'mixed':
|
50 |
+
if dist.get_local_rank() == 0:
|
51 |
+
config.init_device = 'cpu'
|
52 |
+
else:
|
53 |
+
config.init_device = 'meta'
|
54 |
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
55 |
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
56 |
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
57 |
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
58 |
self.embedding_fraction = config.embedding_fraction
|
59 |
+
self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
|
60 |
+
if self.learned_pos_emb:
|
61 |
+
self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
62 |
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
63 |
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
64 |
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
65 |
if config.init_device != 'meta':
|
66 |
+
log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
|
67 |
self.apply(self.param_init_fn)
|
68 |
self.is_causal = not self.prefix_lm
|
69 |
self._attn_bias_initialized = False
|
|
|
72 |
if config.no_bias:
|
73 |
for module in self.modules():
|
74 |
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
75 |
+
log.info(f'Removing bias ({module.bias}) from {module}.')
|
|
|
76 |
module.register_parameter('bias', None)
|
77 |
+
if hasattr(module, 'use_bias'):
|
78 |
+
log.info(f'Setting use_bias=False for {module}.')
|
79 |
+
module.use_bias = False
|
80 |
+
log.debug(self)
|
81 |
+
log.debug(f"Using {self.config.init_config['name']} initialization.")
|
|
|
|
|
82 |
|
83 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
84 |
return self.wte
|
85 |
|
86 |
+
def set_input_embeddings(self, value: nn.Embedding) -> None:
|
87 |
self.wte = value
|
88 |
|
89 |
@torch.no_grad()
|
90 |
+
def _attn_bias(self, device: torch.device, dtype: torch.dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]:
|
91 |
if not self._attn_bias_initialized:
|
92 |
if self.attn_bias_shape:
|
93 |
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
|
|
110 |
if attn_bias is None:
|
111 |
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
|
112 |
else:
|
113 |
+
_s_k = max(0, attn_bias.size(-1) - s_k)
|
114 |
+
attn_bias = attn_bias[:, :, :, _s_k:]
|
115 |
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
|
116 |
raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
|
117 |
min_val = torch.finfo(attn_bias.dtype).min
|
118 |
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
|
119 |
return (attn_bias, None)
|
120 |
|
121 |
+
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor) -> torch.Tensor:
|
122 |
(s_k, s_q) = attn_bias.shape[-2:]
|
123 |
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
124 |
raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
|
|
|
133 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
134 |
return attn_bias
|
135 |
|
136 |
+
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor) -> torch.Tensor:
|
137 |
seq_len = sequence_id.shape[-1]
|
138 |
if seq_len > self.config.max_seq_len:
|
139 |
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
|
|
143 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
144 |
return attn_bias
|
145 |
|
146 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None) -> BaseModelOutputWithPast:
|
147 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
148 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
if attention_mask is not None:
|
150 |
attention_mask = attention_mask.bool()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
if prefix_mask is not None:
|
152 |
prefix_mask = prefix_mask.bool()
|
153 |
if not return_dict:
|
154 |
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
155 |
if output_attentions:
|
156 |
+
if self.attn_impl != 'torch':
|
157 |
+
raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
|
158 |
+
if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
|
159 |
+
raise NotImplementedError('MPT does not support training with left padding.')
|
160 |
if self.prefix_lm and prefix_mask is None:
|
161 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
162 |
+
if inputs_embeds is not None:
|
163 |
+
raise NotImplementedError('inputs_embeds is not implemented for MPT.')
|
164 |
if self.training:
|
165 |
if self.attn_uses_sequence_id and sequence_id is None:
|
166 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
167 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
168 |
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
169 |
+
S = input_ids.size(1)
|
170 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
171 |
+
tok_emb = self.wte(input_ids)
|
172 |
+
if self.learned_pos_emb:
|
|
|
173 |
past_position = 0
|
174 |
if past_key_values is not None:
|
175 |
if len(past_key_values) != self.config.n_layers:
|
176 |
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
177 |
past_position = past_key_values[0][0].size(1)
|
178 |
+
if self.attn_impl == 'torch':
|
179 |
+
past_position = past_key_values[0][0].size(3)
|
180 |
if S + past_position > self.config.max_seq_len:
|
181 |
+
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
182 |
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
183 |
+
if attention_mask is not None:
|
184 |
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
185 |
pos_emb = self.wpe(pos)
|
186 |
x = tok_emb + pos_emb
|
187 |
+
else:
|
188 |
+
x = tok_emb
|
189 |
if self.embedding_fraction == 1:
|
190 |
x = self.emb_drop(x)
|
191 |
else:
|
192 |
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
193 |
assert isinstance(self.emb_drop, nn.Module)
|
194 |
x = self.emb_drop(x_shrunk)
|
195 |
+
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
196 |
+
presents = () if use_cache else None
|
197 |
if use_cache and past_key_values is None:
|
198 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
|
|
199 |
all_hidden_states = () if output_hidden_states else None
|
200 |
+
all_self_attns = () if output_attentions else None
|
201 |
for (b_idx, block) in enumerate(self.blocks):
|
202 |
if output_hidden_states:
|
203 |
assert all_hidden_states is not None
|
204 |
all_hidden_states = all_hidden_states + (x,)
|
205 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
206 |
+
(x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions))
|
207 |
+
if presents is not None:
|
208 |
+
presents += (present,)
|
209 |
+
if output_attentions:
|
210 |
+
assert all_self_attns is not None
|
211 |
+
all_self_attns = all_self_attns + (attn_weights,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
x = self.norm_f(x)
|
213 |
+
if output_hidden_states:
|
214 |
+
assert all_hidden_states is not None
|
215 |
+
all_hidden_states = all_hidden_states + (x,)
|
216 |
+
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
|
217 |
|
218 |
+
def param_init_fn(self, module: nn.Module) -> None:
|
219 |
init_fn_name = self.config.init_config['name']
|
220 |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
221 |
|
222 |
+
def fsdp_wrap_fn(self, module: nn.Module) -> bool:
|
223 |
return isinstance(module, MPTBlock)
|
224 |
|
225 |
+
def activation_checkpointing_fn(self, module: nn.Module) -> bool:
|
226 |
return isinstance(module, MPTBlock)
|
227 |
|
228 |
class MPTForCausalLM(MPTPreTrainedModel):
|
|
|
231 |
super().__init__(config)
|
232 |
if not config.tie_word_embeddings:
|
233 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
234 |
+
log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
|
235 |
+
self.transformer: MPTModel = MPTModel(config)
|
236 |
+
for child in self.transformer.children():
|
237 |
+
if isinstance(child, torch.nn.ModuleList):
|
238 |
+
continue
|
239 |
+
if isinstance(child, torch.nn.Module):
|
240 |
+
child._fsdp_wrap = True
|
241 |
self.logit_scale = None
|
242 |
if config.logit_scale is not None:
|
243 |
logit_scale = config.logit_scale
|
|
|
248 |
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
249 |
self.logit_scale = logit_scale
|
250 |
|
251 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
252 |
return self.transformer.wte
|
253 |
|
254 |
+
def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
|
255 |
self.transformer.wte = value
|
256 |
|
257 |
+
def get_output_embeddings(self) -> nn.Embedding:
|
258 |
return self.transformer.wte
|
259 |
|
260 |
+
def set_output_embeddings(self, new_embeddings: Union[SharedEmbedding, nn.Embedding]) -> None:
|
261 |
self.transformer.wte = new_embeddings
|
262 |
|
263 |
+
def set_decoder(self, decoder: MPTModel) -> None:
|
264 |
self.transformer = decoder
|
265 |
|
266 |
+
def get_decoder(self) -> MPTModel:
|
267 |
return self.transformer
|
268 |
|
269 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None) -> CausalLMOutputWithPast:
|
270 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
271 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
272 |
+
if inputs_embeds is not None:
|
273 |
+
raise NotImplementedError('inputs_embeds has to be None (for hf/peft support).')
|
274 |
+
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
275 |
+
logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
|
276 |
if self.logit_scale is not None:
|
277 |
if self.logit_scale == 0:
|
278 |
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
279 |
logits *= self.logit_scale
|
280 |
loss = None
|
281 |
if labels is not None:
|
282 |
+
_labels = torch.roll(labels, shifts=-1)
|
283 |
+
_labels[:, -1] = -100
|
284 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
|
285 |
+
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
286 |
|
287 |
+
def param_init_fn(self, module: nn.Module) -> None:
|
288 |
init_fn_name = self.config.init_config['name']
|
289 |
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
290 |
|
291 |
+
def fsdp_wrap_fn(self, module: nn.Module) -> bool:
|
292 |
return isinstance(module, MPTBlock)
|
293 |
|
294 |
+
def activation_checkpointing_fn(self, module: nn.Module) -> bool:
|
295 |
return isinstance(module, MPTBlock)
|
296 |
|
297 |
+
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]=None, inputs_embeds: Optional[torch.Tensor]=None, **kwargs: Any) -> Dict[str, Any]:
|
298 |
if inputs_embeds is not None:
|
299 |
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
300 |
attention_mask = kwargs['attention_mask'].bool()
|
|
|
315 |
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
|
316 |
|
317 |
@staticmethod
|
318 |
+
def _reorder_cache(past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]:
|
319 |
"""Used by HuggingFace generate when using beam search with kv-caching.
|
320 |
|
321 |
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
norm.py
CHANGED
@@ -1,6 +1,7 @@
|
|
|
|
1 |
import torch
|
2 |
|
3 |
-
def _cast_if_autocast_enabled(tensor):
|
4 |
if torch.is_autocast_enabled():
|
5 |
if tensor.device.type == 'cuda':
|
6 |
dtype = torch.get_autocast_gpu_dtype()
|
@@ -13,10 +14,10 @@ def _cast_if_autocast_enabled(tensor):
|
|
13 |
|
14 |
class LPLayerNorm(torch.nn.LayerNorm):
|
15 |
|
16 |
-
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None):
|
17 |
super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
|
18 |
|
19 |
-
def forward(self, x):
|
20 |
module_device = x.device
|
21 |
downcast_x = _cast_if_autocast_enabled(x)
|
22 |
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
@@ -24,15 +25,15 @@ class LPLayerNorm(torch.nn.LayerNorm):
|
|
24 |
with torch.autocast(enabled=False, device_type=module_device.type):
|
25 |
return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
26 |
|
27 |
-
def rms_norm(x, weight=None, eps=1e-05):
|
28 |
-
output = x
|
29 |
if weight is not None:
|
30 |
return output * weight
|
31 |
return output
|
32 |
|
33 |
class RMSNorm(torch.nn.Module):
|
34 |
|
35 |
-
def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
|
36 |
super().__init__()
|
37 |
self.eps = eps
|
38 |
if weight:
|
@@ -40,17 +41,17 @@ class RMSNorm(torch.nn.Module):
|
|
40 |
else:
|
41 |
self.register_parameter('weight', None)
|
42 |
|
43 |
-
def forward(self, x):
|
44 |
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
|
45 |
|
46 |
class LPRMSNorm(RMSNorm):
|
47 |
|
48 |
-
def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
|
49 |
super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
|
50 |
|
51 |
-
def forward(self, x):
|
52 |
downcast_x = _cast_if_autocast_enabled(x)
|
53 |
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
54 |
with torch.autocast(enabled=False, device_type=x.device.type):
|
55 |
return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
|
56 |
-
NORM_CLASS_REGISTRY = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
|
|
|
1 |
+
from typing import Dict, List, Optional, Type, Union
|
2 |
import torch
|
3 |
|
4 |
+
def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor:
|
5 |
if torch.is_autocast_enabled():
|
6 |
if tensor.device.type == 'cuda':
|
7 |
dtype = torch.get_autocast_gpu_dtype()
|
|
|
14 |
|
15 |
class LPLayerNorm(torch.nn.LayerNorm):
|
16 |
|
17 |
+
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, elementwise_affine: bool=True, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None):
|
18 |
super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
|
19 |
|
20 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
21 |
module_device = x.device
|
22 |
downcast_x = _cast_if_autocast_enabled(x)
|
23 |
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
|
|
25 |
with torch.autocast(enabled=False, device_type=module_device.type):
|
26 |
return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
27 |
|
28 |
+
def rms_norm(x: torch.Tensor, weight: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor:
|
29 |
+
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
30 |
if weight is not None:
|
31 |
return output * weight
|
32 |
return output
|
33 |
|
34 |
class RMSNorm(torch.nn.Module):
|
35 |
|
36 |
+
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
|
37 |
super().__init__()
|
38 |
self.eps = eps
|
39 |
if weight:
|
|
|
41 |
else:
|
42 |
self.register_parameter('weight', None)
|
43 |
|
44 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
45 |
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
|
46 |
|
47 |
class LPRMSNorm(RMSNorm):
|
48 |
|
49 |
+
def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
|
50 |
super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
|
51 |
|
52 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
downcast_x = _cast_if_autocast_enabled(x)
|
54 |
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
55 |
with torch.autocast(enabled=False, device_type=x.device.type):
|
56 |
return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
|
57 |
+
NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
|
param_init_fns.py
CHANGED
@@ -2,22 +2,26 @@ import math
|
|
2 |
import warnings
|
3 |
from collections.abc import Sequence
|
4 |
from functools import partial
|
5 |
-
from typing import Optional, Tuple, Union
|
6 |
import torch
|
7 |
from torch import nn
|
|
|
8 |
from .norm import NORM_CLASS_REGISTRY
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def torch_default_param_init_fn_(module: nn.Module,
|
11 |
del kwargs
|
12 |
-
if
|
13 |
-
warnings.warn(f"Initializing network using module's reset_parameters attribute")
|
14 |
-
if hasattr(module, 'reset_parameters'):
|
15 |
module.reset_parameters()
|
16 |
|
17 |
-
def fused_init_helper_(module: nn.Module, init_fn_):
|
18 |
_fused = getattr(module, '_fused', None)
|
19 |
if _fused is None:
|
20 |
raise RuntimeError(f'Internal logic error')
|
|
|
21 |
(dim, splits) = _fused
|
22 |
splits = (0, *splits, module.weight.size(dim))
|
23 |
for (s, e) in zip(splits[:-1], splits[1:]):
|
@@ -25,10 +29,8 @@ def fused_init_helper_(module: nn.Module, init_fn_):
|
|
25 |
slice_indices[dim] = slice(s, e)
|
26 |
init_fn_(module.weight[slice_indices])
|
27 |
|
28 |
-
def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None,
|
29 |
del kwargs
|
30 |
-
if verbose > 1:
|
31 |
-
warnings.warn(f'If model has bias parameters they are initialized to 0.')
|
32 |
init_div_is_residual = init_div_is_residual
|
33 |
if init_div_is_residual is False:
|
34 |
div_is_residual = 1.0
|
@@ -36,20 +38,18 @@ def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model:
|
|
36 |
div_is_residual = math.sqrt(2 * n_layers)
|
37 |
elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
|
38 |
div_is_residual = init_div_is_residual
|
39 |
-
elif
|
40 |
div_is_residual = float(init_div_is_residual)
|
41 |
else:
|
42 |
div_is_residual = 1.0
|
43 |
raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
|
44 |
-
if
|
45 |
-
if verbose > 1:
|
46 |
-
warnings.warn(f'Initializing _is_residual layers then dividing them by {div_is_residual:.3f}. ' + f'Set `init_div_is_residual: false` in init config to disable this.')
|
47 |
-
if isinstance(module, nn.Linear):
|
48 |
if hasattr(module, '_fused'):
|
49 |
fused_init_helper_(module, init_fn_)
|
50 |
else:
|
51 |
init_fn_(module.weight)
|
52 |
if module.bias is not None:
|
|
|
53 |
torch.nn.init.zeros_(module.bias)
|
54 |
if init_div_is_residual is not False and getattr(module, '_is_residual', False):
|
55 |
with torch.no_grad():
|
@@ -60,8 +60,6 @@ def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model:
|
|
60 |
if std == 0:
|
61 |
warnings.warn(f'Embedding layer initialized to 0.')
|
62 |
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
|
63 |
-
if verbose > 1:
|
64 |
-
warnings.warn(f'Embedding layer initialized using normal distribution with mean=0 and std={std!r}.')
|
65 |
elif emb_init_uniform_lim is not None:
|
66 |
lim = emb_init_uniform_lim
|
67 |
if isinstance(lim, Sequence):
|
@@ -75,17 +73,13 @@ def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model:
|
|
75 |
lim = [-lim, lim]
|
76 |
(a, b) = lim
|
77 |
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
|
78 |
-
if verbose > 1:
|
79 |
-
warnings.warn(f'Embedding layer initialized using uniform distribution in range {lim}.')
|
80 |
else:
|
81 |
emb_init_fn_ = init_fn_
|
82 |
emb_init_fn_(module.weight)
|
83 |
elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
|
84 |
-
if
|
85 |
-
warnings.warn(f'Norm weights are set to 1. If norm layer has a bias it is initialized to 0.')
|
86 |
-
if hasattr(module, 'weight') and module.weight is not None:
|
87 |
torch.nn.init.ones_(module.weight)
|
88 |
-
if hasattr(module, 'bias') and module.bias
|
89 |
torch.nn.init.zeros_(module.bias)
|
90 |
elif isinstance(module, nn.MultiheadAttention):
|
91 |
if module._qkv_same_embed_dim:
|
@@ -114,32 +108,45 @@ def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model:
|
|
114 |
module.out_proj.weight.div_(div_is_residual)
|
115 |
if module.out_proj.bias is not None:
|
116 |
torch.nn.init.zeros_(module.out_proj.bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
else:
|
118 |
for _ in module.parameters(recurse=False):
|
119 |
raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
|
120 |
|
121 |
-
def _normal_init_(std, mean=0.0):
|
122 |
return partial(torch.nn.init.normal_, mean=mean, std=std)
|
123 |
|
124 |
-
def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None,
|
125 |
del kwargs
|
126 |
init_fn_ = _normal_init_(std=std)
|
127 |
-
|
128 |
-
warnings.warn(f'Using torch.nn.init.normal_ init fn mean=0.0, std={std}')
|
129 |
-
generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
130 |
|
131 |
-
def baseline_param_init_fn_(module: nn.Module, init_std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None,
|
132 |
del kwargs
|
133 |
if init_std is None:
|
134 |
raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
|
135 |
-
_normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim
|
136 |
|
137 |
-
def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None,
|
138 |
del kwargs
|
139 |
std = math.sqrt(2 / (5 * d_model))
|
140 |
-
_normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim
|
141 |
|
142 |
-
def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None,
|
143 |
"""From section 2.3.1 of GPT-NeoX-20B:
|
144 |
|
145 |
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
|
@@ -148,34 +155,25 @@ def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init
|
|
148 |
"""
|
149 |
del kwargs
|
150 |
residual_div = n_layers / math.sqrt(10)
|
151 |
-
|
152 |
-
warnings.warn(f'setting init_div_is_residual to {residual_div}')
|
153 |
-
small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
154 |
|
155 |
-
def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu',
|
156 |
del kwargs
|
157 |
-
if verbose > 1:
|
158 |
-
warnings.warn(f'Using nn.init.kaiming_uniform_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
|
159 |
kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
160 |
-
generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim
|
161 |
|
162 |
-
def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu',
|
163 |
del kwargs
|
164 |
-
if verbose > 1:
|
165 |
-
warnings.warn(f'Using nn.init.kaiming_normal_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
|
166 |
kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
167 |
-
generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim
|
168 |
|
169 |
-
def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0,
|
170 |
del kwargs
|
171 |
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
|
172 |
-
|
173 |
-
warnings.warn(f'Using torch.nn.init.xavier_uniform_ init fn with parameters: ' + f'gain={init_gain}')
|
174 |
-
generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
175 |
|
176 |
-
def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0,
|
|
|
177 |
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
|
178 |
-
|
179 |
-
warnings.warn(f'Using torch.nn.init.xavier_normal_ init fn with parameters: ' + f'gain={init_gain}')
|
180 |
-
generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
181 |
MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}
|
|
|
2 |
import warnings
|
3 |
from collections.abc import Sequence
|
4 |
from functools import partial
|
5 |
+
from typing import Any, Callable, Optional, Tuple, Union
|
6 |
import torch
|
7 |
from torch import nn
|
8 |
+
from .fc import FC_CLASS_REGISTRY
|
9 |
from .norm import NORM_CLASS_REGISTRY
|
10 |
+
try:
|
11 |
+
import transformer_engine.pytorch as te
|
12 |
+
except:
|
13 |
+
te = None
|
14 |
|
15 |
+
def torch_default_param_init_fn_(module: nn.Module, **kwargs: Any) -> None:
|
16 |
del kwargs
|
17 |
+
if hasattr(module, 'reset_parameters') and isinstance(module.reset_parameters, Callable):
|
|
|
|
|
18 |
module.reset_parameters()
|
19 |
|
20 |
+
def fused_init_helper_(module: nn.Module, init_fn_: Callable) -> None:
|
21 |
_fused = getattr(module, '_fused', None)
|
22 |
if _fused is None:
|
23 |
raise RuntimeError(f'Internal logic error')
|
24 |
+
assert isinstance(module.weight, torch.Tensor)
|
25 |
(dim, splits) = _fused
|
26 |
splits = (0, *splits, module.weight.size(dim))
|
27 |
for (s, e) in zip(splits[:-1], splits[1:]):
|
|
|
29 |
slice_indices[dim] = slice(s, e)
|
30 |
init_fn_(module.weight[slice_indices])
|
31 |
|
32 |
+
def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
|
33 |
del kwargs
|
|
|
|
|
34 |
init_div_is_residual = init_div_is_residual
|
35 |
if init_div_is_residual is False:
|
36 |
div_is_residual = 1.0
|
|
|
38 |
div_is_residual = math.sqrt(2 * n_layers)
|
39 |
elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
|
40 |
div_is_residual = init_div_is_residual
|
41 |
+
elif init_div_is_residual.isnumeric():
|
42 |
div_is_residual = float(init_div_is_residual)
|
43 |
else:
|
44 |
div_is_residual = 1.0
|
45 |
raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
|
46 |
+
if isinstance(module, tuple(set(FC_CLASS_REGISTRY.values()))):
|
|
|
|
|
|
|
47 |
if hasattr(module, '_fused'):
|
48 |
fused_init_helper_(module, init_fn_)
|
49 |
else:
|
50 |
init_fn_(module.weight)
|
51 |
if module.bias is not None:
|
52 |
+
assert isinstance(module.bias, torch.Tensor)
|
53 |
torch.nn.init.zeros_(module.bias)
|
54 |
if init_div_is_residual is not False and getattr(module, '_is_residual', False):
|
55 |
with torch.no_grad():
|
|
|
60 |
if std == 0:
|
61 |
warnings.warn(f'Embedding layer initialized to 0.')
|
62 |
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
|
|
|
|
|
63 |
elif emb_init_uniform_lim is not None:
|
64 |
lim = emb_init_uniform_lim
|
65 |
if isinstance(lim, Sequence):
|
|
|
73 |
lim = [-lim, lim]
|
74 |
(a, b) = lim
|
75 |
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
|
|
|
|
|
76 |
else:
|
77 |
emb_init_fn_ = init_fn_
|
78 |
emb_init_fn_(module.weight)
|
79 |
elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
|
80 |
+
if hasattr(module, 'weight') and isinstance(module.weight, torch.Tensor):
|
|
|
|
|
81 |
torch.nn.init.ones_(module.weight)
|
82 |
+
if hasattr(module, 'bias') and isinstance(module.bias, torch.Tensor):
|
83 |
torch.nn.init.zeros_(module.bias)
|
84 |
elif isinstance(module, nn.MultiheadAttention):
|
85 |
if module._qkv_same_embed_dim:
|
|
|
108 |
module.out_proj.weight.div_(div_is_residual)
|
109 |
if module.out_proj.bias is not None:
|
110 |
torch.nn.init.zeros_(module.out_proj.bias)
|
111 |
+
elif te is not None and isinstance(module, te.LayerNormMLP):
|
112 |
+
if isinstance(module.layer_norm_weight, torch.Tensor):
|
113 |
+
torch.nn.init.ones_(module.layer_norm_weight)
|
114 |
+
if isinstance(module.layer_norm_bias, torch.Tensor):
|
115 |
+
torch.nn.init.zeros_(module.layer_norm_bias)
|
116 |
+
init_fn_(module.fc1_weight)
|
117 |
+
if module.fc1_bias is not None:
|
118 |
+
assert isinstance(module.fc1_bias, torch.Tensor)
|
119 |
+
torch.nn.init.zeros_(module.fc1_bias)
|
120 |
+
init_fn_(module.fc2_weight)
|
121 |
+
if module.fc2_bias is not None:
|
122 |
+
assert isinstance(module.fc2_bias, torch.Tensor)
|
123 |
+
torch.nn.init.zeros_(module.fc2_bias)
|
124 |
+
with torch.no_grad():
|
125 |
+
module.fc2_weight.div_(div_is_residual)
|
126 |
else:
|
127 |
for _ in module.parameters(recurse=False):
|
128 |
raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
|
129 |
|
130 |
+
def _normal_init_(std: float, mean: float=0.0) -> Callable:
|
131 |
return partial(torch.nn.init.normal_, mean=mean, std=std)
|
132 |
|
133 |
+
def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
|
134 |
del kwargs
|
135 |
init_fn_ = _normal_init_(std=std)
|
136 |
+
generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
|
|
|
|
137 |
|
138 |
+
def baseline_param_init_fn_(module: nn.Module, init_std: Optional[float], n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
|
139 |
del kwargs
|
140 |
if init_std is None:
|
141 |
raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
|
142 |
+
_normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
143 |
|
144 |
+
def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
|
145 |
del kwargs
|
146 |
std = math.sqrt(2 / (5 * d_model))
|
147 |
+
_normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
148 |
|
149 |
+
def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
|
150 |
"""From section 2.3.1 of GPT-NeoX-20B:
|
151 |
|
152 |
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
|
|
|
155 |
"""
|
156 |
del kwargs
|
157 |
residual_div = n_layers / math.sqrt(10)
|
158 |
+
small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
|
|
|
|
159 |
|
160 |
+
def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
|
161 |
del kwargs
|
|
|
|
|
162 |
kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
163 |
+
generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
164 |
|
165 |
+
def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
|
166 |
del kwargs
|
|
|
|
|
167 |
kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
168 |
+
generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
169 |
|
170 |
+
def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
|
171 |
del kwargs
|
172 |
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
|
173 |
+
generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
|
|
|
|
174 |
|
175 |
+
def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
|
176 |
+
del kwargs
|
177 |
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
|
178 |
+
generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
|
|
|
|
|
179 |
MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
einops==0.5.0
|
2 |
+
triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir_sm90#subdirectory=python
|