File size: 2,075 Bytes
fe5b6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad3d4d8
fe5b6ac
 
 
 
 
 
 
 
 
ad3d4d8
 
fe5b6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad3d4d8
 
fe5b6ac
 
 
 
 
 
 
 
 
 
 
ad3d4d8
 
 
 
fe5b6ac
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-rotated-dungeons-v103
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: rotated_maps
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8333333333333334
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-patch16-224-rotated-dungeons-v103

This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the rotated_maps dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8291
- Accuracy: 0.8333

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.522         | 3.3333  | 20   | 0.8489          | 0.6667   |
| 0.0346        | 6.6667  | 40   | 2.3103          | 0.6667   |
| 0.019         | 10.0    | 60   | 1.4623          | 0.75     |
| 0.017         | 13.3333 | 80   | 0.8291          | 0.8333   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1