--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-rotated-dungeons-v103 results: - task: name: Image Classification type: image-classification dataset: name: rotated_maps type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8333333333333334 --- # vit-base-patch16-224-rotated-dungeons-v103 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the rotated_maps dataset. It achieves the following results on the evaluation set: - Loss: 0.8291 - Accuracy: 0.8333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.522 | 3.3333 | 20 | 0.8489 | 0.6667 | | 0.0346 | 6.6667 | 40 | 2.3103 | 0.6667 | | 0.019 | 10.0 | 60 | 1.4623 | 0.75 | | 0.017 | 13.3333 | 80 | 0.8291 | 0.8333 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1