--- base_model: microsoft/Phi-3.5-mini-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: outputs results: [] --- [Visualize in Weights & Biases](https://wandb.ai/josh-longenecker1-groundedai/phi3.5-hallucination/runs/7sv9jcq1) [Visualize in Weights & Biases](https://wandb.ai/josh-longenecker1-groundedai/phi3.5-hallucination/runs/7sv9jcq1) [Visualize in Weights & Biases](https://wandb.ai/josh-longenecker1-groundedai/phi3.5-hallucination/runs/dsbpmror) [Visualize in Weights & Biases](https://wandb.ai/josh-longenecker1-groundedai/phi3.5-hallucination/runs/tt98djcy) [Visualize in Weights & Biases](https://wandb.ai/josh-longenecker1-groundedai/phi3.5-hallucination/runs/tt98djcy) # outputs This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.979 | 0.5882 | 5 | 2.1552 | | 1.5649 | 1.1765 | 10 | 1.7044 | | 1.5355 | 1.7647 | 15 | 1.3163 | | 0.9301 | 2.3529 | 20 | 1.0521 | | 0.7935 | 2.9412 | 25 | 0.9929 | | 0.6411 | 3.5294 | 30 | 0.9735 | | 0.6521 | 4.1176 | 35 | 0.9699 | | 0.4867 | 4.7059 | 40 | 0.9812 | | 0.6112 | 5.2941 | 45 | 1.0029 | | 0.5041 | 5.8824 | 50 | 1.1055 | | 0.4784 | 6.4706 | 55 | 1.0859 | | 0.3787 | 7.0588 | 60 | 1.1113 | | 0.2676 | 7.6471 | 65 | 1.3963 | | 0.3066 | 8.2353 | 70 | 1.2249 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1