playerzer0x
commited on
Commit
•
938e8ea
1
Parent(s):
7c14a44
Model card auto-generated by SimpleTuner
Browse files
README.md
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: "FLUX.1-dev"
|
4 |
+
tags:
|
5 |
+
- flux
|
6 |
+
- flux-diffusers
|
7 |
+
- text-to-image
|
8 |
+
- diffusers
|
9 |
+
- simpletuner
|
10 |
+
- not-for-all-audiences
|
11 |
+
- lora
|
12 |
+
- template:sd-lora
|
13 |
+
- lycoris
|
14 |
+
inference: true
|
15 |
+
|
16 |
+
---
|
17 |
+
|
18 |
+
# growwithdaisy/dsycam_20241115_133438
|
19 |
+
|
20 |
+
This is a LyCORIS adapter derived from [FLUX.1-dev](https://huggingface.co/FLUX.1-dev).
|
21 |
+
|
22 |
+
|
23 |
+
The main validation prompt used during training was:
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
```
|
28 |
+
a photo of a daisy
|
29 |
+
```
|
30 |
+
|
31 |
+
## Validation settings
|
32 |
+
- CFG: `3.5`
|
33 |
+
- CFG Rescale: `0.0`
|
34 |
+
- Steps: `20`
|
35 |
+
- Sampler: `None`
|
36 |
+
- Seed: `69`
|
37 |
+
- Resolution: `1024x1024`
|
38 |
+
|
39 |
+
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
<Gallery />
|
45 |
+
|
46 |
+
The text encoder **was not** trained.
|
47 |
+
You may reuse the base model text encoder for inference.
|
48 |
+
|
49 |
+
|
50 |
+
## Training settings
|
51 |
+
|
52 |
+
- Training epochs: 0
|
53 |
+
- Training steps: 500
|
54 |
+
- Learning rate: 0.0001
|
55 |
+
- Max grad norm: 2.0
|
56 |
+
- Effective batch size: 16
|
57 |
+
- Micro-batch size: 2
|
58 |
+
- Gradient accumulation steps: 1
|
59 |
+
- Number of GPUs: 8
|
60 |
+
- Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_value=1.0'])
|
61 |
+
- Rescaled betas zero SNR: False
|
62 |
+
- Optimizer: optimi-stableadamwweight_decay=1e-3
|
63 |
+
- Precision: Pure BF16
|
64 |
+
- Quantised: No
|
65 |
+
- Xformers: Not used
|
66 |
+
- LyCORIS Config:
|
67 |
+
```json
|
68 |
+
{
|
69 |
+
"algo": "lokr",
|
70 |
+
"multiplier": 1,
|
71 |
+
"linear_dim": 1000000,
|
72 |
+
"linear_alpha": 1,
|
73 |
+
"factor": 12,
|
74 |
+
"init_lokr_norm": 0.001,
|
75 |
+
"apply_preset": {
|
76 |
+
"target_module": [
|
77 |
+
"FluxTransformerBlock",
|
78 |
+
"FluxSingleTransformerBlock"
|
79 |
+
],
|
80 |
+
"module_algo_map": {
|
81 |
+
"Attention": {
|
82 |
+
"factor": 12
|
83 |
+
},
|
84 |
+
"FeedForward": {
|
85 |
+
"factor": 6
|
86 |
+
}
|
87 |
+
}
|
88 |
+
}
|
89 |
+
}
|
90 |
+
```
|
91 |
+
|
92 |
+
## Datasets
|
93 |
+
|
94 |
+
### mnmlsmo_architecture_photography_style-512
|
95 |
+
- Repeats: 0
|
96 |
+
- Total number of images: ~10456
|
97 |
+
- Total number of aspect buckets: 7
|
98 |
+
- Resolution: 0.262144 megapixels
|
99 |
+
- Cropped: False
|
100 |
+
- Crop style: None
|
101 |
+
- Crop aspect: None
|
102 |
+
- Used for regularisation data: No
|
103 |
+
### mnmlsmo_architecture_photography_style-768
|
104 |
+
- Repeats: 0
|
105 |
+
- Total number of images: ~9000
|
106 |
+
- Total number of aspect buckets: 10
|
107 |
+
- Resolution: 0.589824 megapixels
|
108 |
+
- Cropped: False
|
109 |
+
- Crop style: None
|
110 |
+
- Crop aspect: None
|
111 |
+
- Used for regularisation data: No
|
112 |
+
### mnmlsmo_architecture_photography_style-1024
|
113 |
+
- Repeats: 2
|
114 |
+
- Total number of images: ~3960
|
115 |
+
- Total number of aspect buckets: 1
|
116 |
+
- Resolution: 1.048576 megapixels
|
117 |
+
- Cropped: False
|
118 |
+
- Crop style: None
|
119 |
+
- Crop aspect: None
|
120 |
+
- Used for regularisation data: No
|
121 |
+
### mnmlsmo_art_photography_style-512
|
122 |
+
- Repeats: 0
|
123 |
+
- Total number of images: ~448
|
124 |
+
- Total number of aspect buckets: 6
|
125 |
+
- Resolution: 0.262144 megapixels
|
126 |
+
- Cropped: False
|
127 |
+
- Crop style: None
|
128 |
+
- Crop aspect: None
|
129 |
+
- Used for regularisation data: No
|
130 |
+
### mnmlsmo_art_photography_style-768
|
131 |
+
- Repeats: 0
|
132 |
+
- Total number of images: ~416
|
133 |
+
- Total number of aspect buckets: 7
|
134 |
+
- Resolution: 0.589824 megapixels
|
135 |
+
- Cropped: False
|
136 |
+
- Crop style: None
|
137 |
+
- Crop aspect: None
|
138 |
+
- Used for regularisation data: No
|
139 |
+
### mnmlsmo_art_photography_style-1024
|
140 |
+
- Repeats: 1
|
141 |
+
- Total number of images: ~232
|
142 |
+
- Total number of aspect buckets: 9
|
143 |
+
- Resolution: 1.048576 megapixels
|
144 |
+
- Cropped: False
|
145 |
+
- Crop style: None
|
146 |
+
- Crop aspect: None
|
147 |
+
- Used for regularisation data: No
|
148 |
+
### mnmlsmo_furniture_photography_style-512
|
149 |
+
- Repeats: 0
|
150 |
+
- Total number of images: ~3888
|
151 |
+
- Total number of aspect buckets: 13
|
152 |
+
- Resolution: 0.262144 megapixels
|
153 |
+
- Cropped: False
|
154 |
+
- Crop style: None
|
155 |
+
- Crop aspect: None
|
156 |
+
- Used for regularisation data: No
|
157 |
+
### mnmlsmo_furniture_photography_style-768
|
158 |
+
- Repeats: 0
|
159 |
+
- Total number of images: ~3352
|
160 |
+
- Total number of aspect buckets: 13
|
161 |
+
- Resolution: 0.589824 megapixels
|
162 |
+
- Cropped: False
|
163 |
+
- Crop style: None
|
164 |
+
- Crop aspect: None
|
165 |
+
- Used for regularisation data: No
|
166 |
+
### mnmlsmo_furniture_photography_style-1024
|
167 |
+
- Repeats: 1
|
168 |
+
- Total number of images: ~1728
|
169 |
+
- Total number of aspect buckets: 4
|
170 |
+
- Resolution: 1.048576 megapixels
|
171 |
+
- Cropped: False
|
172 |
+
- Crop style: None
|
173 |
+
- Crop aspect: None
|
174 |
+
- Used for regularisation data: No
|
175 |
+
### mnmlsmo_homewares_photography_style-512
|
176 |
+
- Repeats: 0
|
177 |
+
- Total number of images: ~1096
|
178 |
+
- Total number of aspect buckets: 6
|
179 |
+
- Resolution: 0.262144 megapixels
|
180 |
+
- Cropped: False
|
181 |
+
- Crop style: None
|
182 |
+
- Crop aspect: None
|
183 |
+
- Used for regularisation data: No
|
184 |
+
### mnmlsmo_homewares_photography_style-768
|
185 |
+
- Repeats: 0
|
186 |
+
- Total number of images: ~1072
|
187 |
+
- Total number of aspect buckets: 3
|
188 |
+
- Resolution: 0.589824 megapixels
|
189 |
+
- Cropped: False
|
190 |
+
- Crop style: None
|
191 |
+
- Crop aspect: None
|
192 |
+
- Used for regularisation data: No
|
193 |
+
### mnmlsmo_homewares_photography_style-1024
|
194 |
+
- Repeats: 1
|
195 |
+
- Total number of images: ~520
|
196 |
+
- Total number of aspect buckets: 2
|
197 |
+
- Resolution: 1.048576 megapixels
|
198 |
+
- Cropped: False
|
199 |
+
- Crop style: None
|
200 |
+
- Crop aspect: None
|
201 |
+
- Used for regularisation data: No
|
202 |
+
### mnmlsmo_interiors_photography_style-512
|
203 |
+
- Repeats: 0
|
204 |
+
- Total number of images: ~1336
|
205 |
+
- Total number of aspect buckets: 4
|
206 |
+
- Resolution: 0.262144 megapixels
|
207 |
+
- Cropped: False
|
208 |
+
- Crop style: None
|
209 |
+
- Crop aspect: None
|
210 |
+
- Used for regularisation data: No
|
211 |
+
### mnmlsmo_interiors_photography_style-768
|
212 |
+
- Repeats: 0
|
213 |
+
- Total number of images: ~1312
|
214 |
+
- Total number of aspect buckets: 5
|
215 |
+
- Resolution: 0.589824 megapixels
|
216 |
+
- Cropped: False
|
217 |
+
- Crop style: None
|
218 |
+
- Crop aspect: None
|
219 |
+
- Used for regularisation data: No
|
220 |
+
### mnmlsmo_interiors_photography_style-1024
|
221 |
+
- Repeats: 1
|
222 |
+
- Total number of images: ~800
|
223 |
+
- Total number of aspect buckets: 1
|
224 |
+
- Resolution: 1.048576 megapixels
|
225 |
+
- Cropped: False
|
226 |
+
- Crop style: None
|
227 |
+
- Crop aspect: None
|
228 |
+
- Used for regularisation data: No
|
229 |
+
### mnmlsmo_lighting_photography_style-512
|
230 |
+
- Repeats: 0
|
231 |
+
- Total number of images: ~504
|
232 |
+
- Total number of aspect buckets: 5
|
233 |
+
- Resolution: 0.262144 megapixels
|
234 |
+
- Cropped: False
|
235 |
+
- Crop style: None
|
236 |
+
- Crop aspect: None
|
237 |
+
- Used for regularisation data: No
|
238 |
+
### mnmlsmo_lighting_photography_style-768
|
239 |
+
- Repeats: 0
|
240 |
+
- Total number of images: ~504
|
241 |
+
- Total number of aspect buckets: 5
|
242 |
+
- Resolution: 0.589824 megapixels
|
243 |
+
- Cropped: False
|
244 |
+
- Crop style: None
|
245 |
+
- Crop aspect: None
|
246 |
+
- Used for regularisation data: No
|
247 |
+
### mnmlsmo_lighting_photography_style-1024
|
248 |
+
- Repeats: 0
|
249 |
+
- Total number of images: ~320
|
250 |
+
- Total number of aspect buckets: 4
|
251 |
+
- Resolution: 1.048576 megapixels
|
252 |
+
- Cropped: False
|
253 |
+
- Crop style: None
|
254 |
+
- Crop aspect: None
|
255 |
+
- Used for regularisation data: No
|
256 |
+
### mnmlsmo_moods_photography_style-512
|
257 |
+
- Repeats: 0
|
258 |
+
- Total number of images: ~680
|
259 |
+
- Total number of aspect buckets: 3
|
260 |
+
- Resolution: 0.262144 megapixels
|
261 |
+
- Cropped: False
|
262 |
+
- Crop style: None
|
263 |
+
- Crop aspect: None
|
264 |
+
- Used for regularisation data: No
|
265 |
+
### mnmlsmo_moods_photography_style-768
|
266 |
+
- Repeats: 0
|
267 |
+
- Total number of images: ~680
|
268 |
+
- Total number of aspect buckets: 3
|
269 |
+
- Resolution: 0.589824 megapixels
|
270 |
+
- Cropped: False
|
271 |
+
- Crop style: None
|
272 |
+
- Crop aspect: None
|
273 |
+
- Used for regularisation data: No
|
274 |
+
### mnmlsmo_moods_photography_style-1024
|
275 |
+
- Repeats: 1
|
276 |
+
- Total number of images: ~352
|
277 |
+
- Total number of aspect buckets: 2
|
278 |
+
- Resolution: 1.048576 megapixels
|
279 |
+
- Cropped: False
|
280 |
+
- Crop style: None
|
281 |
+
- Crop aspect: None
|
282 |
+
- Used for regularisation data: No
|
283 |
+
### mnmlsmo_technology_photography_style-512
|
284 |
+
- Repeats: 0
|
285 |
+
- Total number of images: ~680
|
286 |
+
- Total number of aspect buckets: 4
|
287 |
+
- Resolution: 0.262144 megapixels
|
288 |
+
- Cropped: False
|
289 |
+
- Crop style: None
|
290 |
+
- Crop aspect: None
|
291 |
+
- Used for regularisation data: No
|
292 |
+
### mnmlsmo_technology_photography_style-768
|
293 |
+
- Repeats: 0
|
294 |
+
- Total number of images: ~680
|
295 |
+
- Total number of aspect buckets: 4
|
296 |
+
- Resolution: 0.589824 megapixels
|
297 |
+
- Cropped: False
|
298 |
+
- Crop style: None
|
299 |
+
- Crop aspect: None
|
300 |
+
- Used for regularisation data: No
|
301 |
+
### mnmlsmo_technology_photography_style-1024
|
302 |
+
- Repeats: 1
|
303 |
+
- Total number of images: ~376
|
304 |
+
- Total number of aspect buckets: 3
|
305 |
+
- Resolution: 1.048576 megapixels
|
306 |
+
- Cropped: False
|
307 |
+
- Crop style: None
|
308 |
+
- Crop aspect: None
|
309 |
+
- Used for regularisation data: No
|
310 |
+
|
311 |
+
|
312 |
+
## Inference
|
313 |
+
|
314 |
+
|
315 |
+
```python
|
316 |
+
import torch
|
317 |
+
from diffusers import DiffusionPipeline
|
318 |
+
from lycoris import create_lycoris_from_weights
|
319 |
+
|
320 |
+
|
321 |
+
def download_adapter(repo_id: str):
|
322 |
+
import os
|
323 |
+
from huggingface_hub import hf_hub_download
|
324 |
+
adapter_filename = "pytorch_lora_weights.safetensors"
|
325 |
+
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
|
326 |
+
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
|
327 |
+
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
|
328 |
+
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
|
329 |
+
os.makedirs(path_to_adapter, exist_ok=True)
|
330 |
+
hf_hub_download(
|
331 |
+
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
|
332 |
+
)
|
333 |
+
|
334 |
+
return path_to_adapter_file
|
335 |
+
|
336 |
+
model_id = 'FLUX.1-dev'
|
337 |
+
adapter_repo_id = 'playerzer0x/growwithdaisy/dsycam_20241115_133438'
|
338 |
+
adapter_filename = 'pytorch_lora_weights.safetensors'
|
339 |
+
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
|
340 |
+
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
|
341 |
+
lora_scale = 1.0
|
342 |
+
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
|
343 |
+
wrapper.merge_to()
|
344 |
+
|
345 |
+
prompt = "a photo of a daisy"
|
346 |
+
|
347 |
+
|
348 |
+
## Optional: quantise the model to save on vram.
|
349 |
+
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
|
350 |
+
#from optimum.quanto import quantize, freeze, qint8
|
351 |
+
#quantize(pipeline.transformer, weights=qint8)
|
352 |
+
#freeze(pipeline.transformer)
|
353 |
+
|
354 |
+
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
|
355 |
+
image = pipeline(
|
356 |
+
prompt=prompt,
|
357 |
+
num_inference_steps=20,
|
358 |
+
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
|
359 |
+
width=1024,
|
360 |
+
height=1024,
|
361 |
+
guidance_scale=3.5,
|
362 |
+
).images[0]
|
363 |
+
image.save("output.png", format="PNG")
|
364 |
+
```
|
365 |
+
|