guest400123064 commited on
Commit
e477a24
1 Parent(s): 002ef39

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ license: apache-2.0
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - transformers
9
+ datasets:
10
+ - flax-sentence-embeddings/stackexchange_xml
11
+ - s2orc
12
+ - ms_marco
13
+ - wiki_atomic_edits
14
+ - snli
15
+ - multi_nli
16
+ - embedding-data/altlex
17
+ - embedding-data/simple-wiki
18
+ - embedding-data/flickr30k-captions
19
+ - embedding-data/coco_captions
20
+ - embedding-data/sentence-compression
21
+ - embedding-data/QQP
22
+ - yahoo_answers_topics
23
+ ---
24
+
25
+ # sentence-transformers/paraphrase-MiniLM-L3-v2
26
+
27
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
28
+
29
+
30
+
31
+ ## Usage (Sentence-Transformers)
32
+
33
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
34
+
35
+ ```
36
+ pip install -U sentence-transformers
37
+ ```
38
+
39
+ Then you can use the model like this:
40
+
41
+ ```python
42
+ from sentence_transformers import SentenceTransformer
43
+ sentences = ["This is an example sentence", "Each sentence is converted"]
44
+
45
+ model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L3-v2')
46
+ embeddings = model.encode(sentences)
47
+ print(embeddings)
48
+ ```
49
+
50
+
51
+
52
+ ## Usage (HuggingFace Transformers)
53
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
54
+
55
+ ```python
56
+ from transformers import AutoTokenizer, AutoModel
57
+ import torch
58
+
59
+
60
+ #Mean Pooling - Take attention mask into account for correct averaging
61
+ def mean_pooling(model_output, attention_mask):
62
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
63
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
64
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
65
+
66
+
67
+ # Sentences we want sentence embeddings for
68
+ sentences = ['This is an example sentence', 'Each sentence is converted']
69
+
70
+ # Load model from HuggingFace Hub
71
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L3-v2')
72
+ model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L3-v2')
73
+
74
+ # Tokenize sentences
75
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
76
+
77
+ # Compute token embeddings
78
+ with torch.no_grad():
79
+ model_output = model(**encoded_input)
80
+
81
+ # Perform pooling. In this case, max pooling.
82
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
83
+
84
+ print("Sentence embeddings:")
85
+ print(sentence_embeddings)
86
+ ```
87
+
88
+
89
+
90
+ ## Evaluation Results
91
+
92
+
93
+
94
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-MiniLM-L3-v2)
95
+
96
+
97
+
98
+ ## Full Model Architecture
99
+ ```
100
+ SentenceTransformer(
101
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
102
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
103
+ )
104
+ ```
105
+
106
+ ## Citing & Authors
107
+
108
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
109
+
110
+ If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
111
+ ```bibtex
112
+ @inproceedings{reimers-2019-sentence-bert,
113
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
114
+ author = "Reimers, Nils and Gurevych, Iryna",
115
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
116
+ month = "11",
117
+ year = "2019",
118
+ publisher = "Association for Computational Linguistics",
119
+ url = "http://arxiv.org/abs/1908.10084",
120
+ }
121
+ ```
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/dogdog/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-MiniLM-L3-v2/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 3,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.26.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d7b35802c42f2e0d22ee3e51ef06b6db7678fc8520eba6d094046ab44d1f338
3
+ size 69581081
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_basic_tokenize": true,
4
+ "do_lower_case": true,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 512,
7
+ "name_or_path": "/home/dogdog/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-MiniLM-L3-v2/",
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "special_tokens_map_file": "/home/dogdog/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-MiniLM-L3-v2/special_tokens_map.json",
12
+ "strip_accents": null,
13
+ "tokenize_chinese_chars": true,
14
+ "tokenizer_class": "BertTokenizer",
15
+ "unk_token": "[UNK]"
16
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff