--- license: mit base_model: numind/NuNER-v1.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: nuner-v1_ontonotes5 results: [] --- # nuner-v1_ontonotes5 This model is a fine-tuned version of [numind/NuNER-v1.0](https://huggingface.co/numind/NuNER-v1.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0728 - Precision: 0.8712 - Recall: 0.9000 - F1: 0.8853 - Accuracy: 0.9811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0781 | 1.0 | 936 | 0.0754 | 0.8392 | 0.8843 | 0.8612 | 0.9778 | | 0.049 | 2.0 | 1873 | 0.0685 | 0.8597 | 0.8935 | 0.8763 | 0.9794 | | 0.0357 | 3.0 | 2809 | 0.0714 | 0.8608 | 0.9016 | 0.8807 | 0.9806 | | 0.027 | 4.0 | 3744 | 0.0728 | 0.8712 | 0.9000 | 0.8853 | 0.9811 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0+cu117 - Datasets 2.18.0 - Tokenizers 0.15.2