ppo-LunarLander-v2 / config.json
gustavodemoura's picture
Upload PPO LunarLander-v2 trained agent
601829e
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d175cd763b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d175cd76440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d175cd764d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d175cd76560>", "_build": "<function ActorCriticPolicy._build at 0x7d175cd765f0>", "forward": "<function ActorCriticPolicy.forward at 0x7d175cd76680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d175cd76710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d175cd767a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d175cd76830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d175cd768c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d175cd76950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d175cd769e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d175cb84340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693599925710934535, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3NtbyzFrA/G0Wvvoerp75UJ+W7TG0EvgAAAAAAAAAARneSPvQiaz/33wi+d2a6vscTyj76ho6+AAAAAAAAAABmprI5w3FCuuVejzbTvnIxrDo9u9o5qbUAAIA/AACAPzNnt7yDTkK8a7liuo3anzwuaKQ9+oGCvQAAgD8AAIA/WnefPYh35D4+Chy+8PnEvlrrer2Tsjq8AAAAAAAAAACa3sE8QypLP8CaMr2VoM++CrKIvEj83b0AAAAAAAAAAM3Yz734DZY/KpxUvtIG8r7MDwC+9NEKvQAAAAAAAAAAAJyHO0hVg7oIjV46UBKttf4vITtTZX25AACAPwAAgD8zQsI8XCkpPhK+tT1uuZ6+QLXGvFpDhj0AAAAAAAAAAGZw+LyhtZy8ghk8PnTUm73LD+y9mivIvgAAgD8AAIA/7U0Ovrjirj4mKSM9REG6vmkGf70KIAo9AAAAAAAAAABmGj48R3qaPzo6DTymOOy+CSmTPZTjMD0AAAAAAAAAAKD1B74uRqA/QsQav3nYCb8TtD++8JbBvgAAAAAAAAAAZuqVPtfhKr2jxdU7boQ8usH3lL66kAm7AACAPwAAgD+zr7Y9GbKHP2W7Sz4KT76++TVcPn/VED4AAAAAAAAAAJpoUr2MU3o+2KCyPWGVp750pjW9yt84PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE7MneBQN2MAWyUS/6MAXSUR0Cl520gbIcSdX2UKGgGR0ByrD+FUQ05aAdNHgFoCEdApeeBMnJDE3V9lChoBkdAcwFVj7Q9imgHS/BoCEdApefZy6tknXV9lChoBkdAcqn9vS+g12gHS/1oCEdApeff8uSOinV9lChoBkdAcqoxrzoUz2gHTSYBaAhHQKXoH9cbBGh1fZQoaAZHQHF7k1EVnEloB0vcaAhHQKXoKZx7zCl1fZQoaAZHQG/HKQq7ROVoB0v3aAhHQKXoZAkcCHR1fZQoaAZHQHHMTZ+QU6BoB014A2gIR0Cl6HweV9ncdX2UKGgGR0Bxv4uHvc8DaAdL/GgIR0Cl6JB8YyfudX2UKGgGR0BxJcLApKBeaAdL5WgIR0Cl6Pa9sabXdX2UKGgGR0Bwbq+mFajfaAdL62gIR0Cl6QyCWeH0dX2UKGgGR0ByWAmeDnNgaAdL5mgIR0Cl6Rc/D+BIdX2UKGgGR0Bxi/k2gnMMaAdL1WgIR0Cl6Tk92X9jdX2UKGgGR0Bs0IzBRAKOaAdL3mgIR0Cl6XDD0lJIdX2UKGgGR0BvUXRw6ySnaAdL4mgIR0Cl6cJTl1bJdX2UKGgGR0Bxkj/+85CGaAdL2mgIR0Cl6edGI9DAdX2UKGgGR0ByB/Wvr4WUaAdL8GgIR0Cl6jup84PxdX2UKGgGR0BvNKfL9uP4aAdNEQFoCEdApepiNEPUa3V9lChoBkdAbxnnxJ/XoWgHS+VoCEdApep3T/hl2HV9lChoBkdAbhOGxD9fkWgHS9xoCEdApeqiAWi1zHV9lChoBkdAcyEv3rUsnWgHS/VoCEdAperllPJq7HV9lChoBkdAa/3q3VkMC2gHTRcBaAhHQKXrDcv/R3N1fZQoaAZHQHJPIKIBRyhoB0veaAhHQKXrGWXTmXB1fZQoaAZHQHCv8nNPgvVoB0vzaAhHQKXrKCp3os91fZQoaAZHQHDj7rkbPyFoB00KAWgIR0Cl64O01IiDdX2UKGgGR0BySR9Sde6aaAdL9mgIR0Cl68uVPepGdX2UKGgGR0BwTm/Yao/BaAdL9WgIR0Cl6+AMMI/rdX2UKGgGR0ByhP0f5k9VaAdL3GgIR0Cl7ACcwxnGdX2UKGgGR0BxVI7jkuHvaAdNBQFoCEdApewasOoYN3V9lChoBkdAcwrfYSQHRmgHTRABaAhHQKXsWNZNfw91fZQoaAZHQHMMnBxgiNdoB0v0aAhHQKXsw6BiCrd1fZQoaAZHQG88tZmqYJFoB00WAWgIR0Cl7QpazNUwdX2UKGgGR0BymCScLBsRaAdL5mgIR0Cl7S3EAHVxdX2UKGgGR0Bw/fbcoH9naAdL62gIR0Cl7W0+1SfldX2UKGgGR0ByRDUExIrfaAdNAQFoCEdApe1w5DJEIHV9lChoBkdAcKS9ECvHLmgHTRIBaAhHQKXtgac7Qsx1fZQoaAZHQHFYuwX668RoB0vdaAhHQKXtqleF+NN1fZQoaAZHQHKNn1OCXhRoB0vyaAhHQKX5AVu76Hl1fZQoaAZHQG2m4nfEXLxoB0voaAhHQKX5MbIcR151fZQoaAZHQHFmVw5vLoxoB00NAWgIR0Cl+bmrjo6kdX2UKGgGR0Byhns0HhS+aAdL82gIR0Cl+diItUXIdX2UKGgGR0BwSJb6guh9aAdL42gIR0Cl+jGbTc7AdX2UKGgGR0Bv34ddVvMsaAdL/GgIR0Cl+kfzreImdX2UKGgGR0B0AWxUvPC3aAdL5mgIR0Cl+lcp1A7gdX2UKGgGR0Byce65Gz8haAdNBAFoCEdApfpxoqTbFnV9lChoBkdAb/3qveP7vWgHS+ZoCEdApfqVS/CZW3V9lChoBkdAcyvq2SdOI2gHS+poCEdApftH+MqBmXV9lChoBkdAcrrbNbC79WgHTQsBaAhHQKX7cLBsQ/Z1fZQoaAZHQHJCJ08vEjxoB0v2aAhHQKX7lZamoBJ1fZQoaAZHQHLTwRf4REpoB0vlaAhHQKX7n/6O5rh1fZQoaAZHQG37wRf4REpoB00GAWgIR0Cl/AK+i8FqdX2UKGgGR0BxfJBt1p0waAdL8mgIR0Cl/B7lJYkndX2UKGgGR0Bw70zSCvovaAdL1WgIR0Cl/EpFCswMdX2UKGgGR0BymWk/KQq7aAdNDQFoCEdApfxYAU+LWXV9lChoBkdAcgVP+XJHRWgHTQ4BaAhHQKX8lTlT3qR1fZQoaAZHQG4Y6Jyhi9ZoB0vXaAhHQKX8w2l2vB91fZQoaAZHQHHDG8VYZEVoB0v+aAhHQKX85ul41P51fZQoaAZHQG7BDOkcjqxoB0vjaAhHQKX8/nr6ciJ1fZQoaAZHQHGqo3rD631oB0v/aAhHQKX9hesxO+J1fZQoaAZHQG9eQd8zAN5oB00IAWgIR0Cl/c8rAgxKdX2UKGgGR0BzUEd0aIepaAdL5GgIR0Cl/hlNcnmadX2UKGgGR0ByzCu0TlDGaAdL4GgIR0Cl/jJtrKvFdX2UKGgGR0ByqMLNOdoWaAdL12gIR0Cl/joKD017dX2UKGgGR0BuJl9fCyhSaAdL+2gIR0Cl/rcawUxmdX2UKGgGR0ByGfe7+T/yaAdL9WgIR0Cl/xChN/OMdX2UKGgGR0Bx3Gef7JnyaAdL5WgIR0Cl/yf642CNdX2UKGgGR0BwTBE9dNWVaAdL92gIR0Cl/zbyYoiLdX2UKGgGR0ByZwSDh99daAdL32gIR0Cl/2bw8W9EdX2UKGgGR0BzZe2PT5O8aAdL+mgIR0Cl/3vmPo3adX2UKGgGR0Bup1eOXE61aAdL5WgIR0Cl/+YSQHRkdX2UKGgGR0Bu7bqY7aIvaAdL8GgIR0Cl//MNUfgadX2UKGgGR0BzT8/s3Q2NaAdNAgFoCEdApgAGF36hx3V9lChoBkdAcZ6Vmz0HyGgHS+BoCEdApgBdByCFsnV9lChoBkdAbXtu5z5oG2gHS+1oCEdApgDWQjlgdHV9lChoBkdAcRiQ7tAs1GgHS/NoCEdApgFCoqCpWHV9lChoBkdAcQ4SNOuaF2gHTQEBaAhHQKYBnjYqXnh1fZQoaAZHQHKMP1+RYA9oB0veaAhHQKYBr0PpY9x1fZQoaAZHQHEozdDYywhoB00PAWgIR0CmAcjlxOtXdX2UKGgGR0BxfJ2HLzPKaAdL62gIR0CmAja6reZYdX2UKGgGR0BwOHALy+YdaAdL+WgIR0CmAoHOSntOdX2UKGgGR0ByiB5AyEcsaAdL9WgIR0CmAriUX531dX2UKGgGR0Bv0hreqJdjaAdNAwFoCEdApgMFZFG5MHV9lChoBkdAcSGv863iJmgHS9toCEdApgMUK/mDDnV9lChoBkdAcmsa5PM0QGgHTSMDaAhHQKYDMKXv6TJ1fZQoaAZHQHHAEtZmqYJoB0vuaAhHQKYDQPy08eV1fZQoaAZHQG+2a/yoXKtoB0vzaAhHQKYDRK5kK/p1fZQoaAZHQGxl38GcFyJoB00rAWgIR0CmA0piRW92dX2UKGgGR0ByiwgEEC/5aAdL3mgIR0CmA3HGKhtcdX2UKGgGR0Bw1LPGACnxaAdL62gIR0CmA/zNt65YdX2UKGgGR0Bx8wj1PFefaAdL1WgIR0CmBBIZIg/1dX2UKGgGR0BzYPhOxjaxaAdL42gIR0CmBIXBguyvdX2UKGgGR0BxC3utwJgLaAdL3mgIR0CmBIOuieundX2UKGgGR0Bx2RUedTYNaAdL5mgIR0CmBLpm/WUbdX2UKGgGR0BxOiHTI/7jaAdL6GgIR0CmBSkB0ZFYdX2UKGgGR0BvcyamXPZ7aAdL3GgIR0CmBUVU+9rXdX2UKGgGR0Bzg3PLPldUaAdL42gIR0CmBYnkkrwwdX2UKGgGR0BxWbfxc3VDaAdL2GgIR0CmBaeZ5Rj0dX2UKGgGR0BxdjW4EwFlaAdL4WgIR0CmBczkyULVdX2UKGgGR0Bv2RT6zmfXaAdL02gIR0CmBcz1K5CodX2UKGgGR0Bw5aeJ53TvaAdL42gIR0CmBfhGQSzxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}