gustavodemoura commited on
Commit
9a378ed
1 Parent(s): 45294f3

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 234.66 +/- 46.13
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d175cd763b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d175cd76440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d175cd764d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d175cd76560>", "_build": "<function ActorCriticPolicy._build at 0x7d175cd765f0>", "forward": "<function ActorCriticPolicy.forward at 0x7d175cd76680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d175cd76710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d175cd767a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d175cd76830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d175cd768c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d175cd76950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d175cd769e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d175cb84340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693598145736558216, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3c2j325Ga6htl7Op6/gTQN/UW7AzWSuQAAgD8AAIA/zbLgPHvihLodupI7kxYjOJjRYjqTH3W3AACAPwAAgD+aT289XI8QuikFPTtmuYE1fjWkOzBkeDQAAIA/AACAP8BUyj0p6Ge69mR4OWaSbzTvgTg6yNiRuAAAgD8AAIA/mqvYPeHkn7oXCbW6l960ta67hDmFodA5AACAPwAAgD9m0gU9KWBKugLFybOyBGcvRRpVu29itjMAAIA/AACAP5qbArx7IpC6sHGKubrmgbTrv9Y6rKagOAAAgD8AAIA/JsGfvcfz+z5Alzk+YrBxvsNSq7zS2po9AAAAAAAAAAAzq6C8zNVXPmtkHT7MioC+VkyVPOkMOz0AAAAAAAAAABpO871ngaI/hbiHvusCyL5Yizm+IIuIPQAAAAAAAAAAJkgWPqSDVLve4My4TAHmNepApbzL7Pg3AACAPwAAgD8zGwu7/Kq0P1Pg0b2pXA+6C8hlOopFArwAAAAAAAAAAJrW+D0IgaQ99qE1vR8Zeb4th2e7XsjLPQAAAAAAAAAAphCkvSn4PLru13M4ip4SNMHtPztzrYy3AAAAAAAAgD/NEPu7XCM9uknXP7VLsLGw/dWYupNzUzQAAIA/AACAPwDw+zq6Fl4+9naWvLPNg77kzAG8bcpYPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUgCgsbvPWMAWyUTegDjAF0lEdAlRrxFAmiQHV9lChoBkdAYm3LW7OE/WgHTegDaAhHQJUbQo5PuXx1fZQoaAZHQGQNubI91U5oB03oA2gIR0CVJdPrv9cbdX2UKGgGR0Bj6XuAqd6LaAdN6ANoCEdAlScAOjIq9XV9lChoBkdAZRkC6pYLcGgHTegDaAhHQJUocWweNkx1fZQoaAZHQEWdrpJPIn1oB0vuaAhHQJUqdAkcCHR1fZQoaAZHQGVyk384xUNoB03oA2gIR0CVMVswco6TdX2UKGgGR0BeCAuVX3g2aAdN6ANoCEdAlTQVfmcOLHV9lChoBkdAYtIQvHtF8WgHTegDaAhHQJU1hL7Gecx1fZQoaAZHQF7M2rn1WbRoB03oA2gIR0CVOXIfr8iwdX2UKGgGR0BmTWq7yxzJaAdN6ANoCEdAlUWxwyZa3nV9lChoBkdAYDsgte2NN2gHTegDaAhHQJVbtv0h/y51fZQoaAZHQGcBd9Dx9XtoB03oA2gIR0CVXBMh5gPVdX2UKGgGR0Ax80+TvAoHaAdNCwFoCEdAlV8wymALA3V9lChoBkdAY6E0Mw1zhmgHTegDaAhHQJVhGSr5qM51fZQoaAZHQGSD5bhWHUNoB03oA2gIR0CVYRrPdEb6dX2UKGgGR0BmYUaCL/CJaAdN6ANoCEdAlWL75qM3qHV9lChoBkdAYbll4keIVWgHTegDaAhHQJVmp9LHuJF1fZQoaAZHQGBs0K7ZnL9oB03oA2gIR0CVbLy+6Ae8dX2UKGgGR0BlGqi48U22aAdN6ANoCEdAlXfpi/fwZ3V9lChoBkdAYM2ZnctXgmgHTegDaAhHQJV5dOk+HJt1fZQoaAZHQGEFaakRBeJoB03oA2gIR0CVe4tzS1E3dX2UKGgGR0Bls+RYA80UaAdN6ANoCEdAlX4nvlU6xXV9lChoBkdAY6ZFtKqXGGgHTegDaAhHQJWFuuHN5dJ1fZQoaAZHQGR7gc1fmcRoB03oA2gIR0CViByZa3ZxdX2UKGgGR0Bl9MkQf6oEaAdN6ANoCEdAlYlMl5WzW3V9lChoBkdAZcTmFJxvN2gHTegDaAhHQJWUvxZuAI91fZQoaAZHQGU1zgEU0vZoB03oA2gIR0CVqPN7SiM6dX2UKGgGR0BagWlANXo1aAdN6ANoCEdAlalRCY1HfHV9lChoBkdAZhXoicG1QmgHTegDaAhHQJWskt03fhx1fZQoaAZHQGPxXZ5AyEdoB03oA2gIR0CVrvV8CxNZdX2UKGgGR0BfDSbc45tFaAdN6ANoCEdAla73m/336HV9lChoBkdAZCnvaURnOGgHTegDaAhHQJWxe0MPSUl1fZQoaAZHQFs64hUzbexoB03oA2gIR0CVtsx2jfvXdX2UKGgGR0BkJjRQaaTfaAdN6ANoCEdAlb7RvNu+AXV9lChoBkdAZQ3SsKb8WWgHTegDaAhHQJXIcFlkH2R1fZQoaAZHQGUD5S3solVoB03oA2gIR0CVyZgV45cUdX2UKGgGR0Bi+R6hQFcIaAdN6ANoCEdAlcsObNKRMnV9lChoBkdAWkfGS6lLvmgHTegDaAhHQJXNB+SbH6x1fZQoaAZHQGKVTtkWhytoB03oA2gIR0CV07QYDTz/dX2UKGgGR0BmyNj5KvmpaAdN6ANoCEdAldZk+X7cf3V9lChoBkdAZnA0F8ohIWgHTegDaAhHQJXXvqKP4mF1fZQoaAZHQGERzjWCmMxoB03oA2gIR0CV5HGyX2M9dX2UKGgGR0BoG8lXzUZvaAdN6ANoCEdAlerfBzmwJXV9lChoBkdAYo+KaXrt3WgHTegDaAhHQJXreVmjCYV1fZQoaAZHQGLNWTHKfWdoB03oA2gIR0CWAiCdBjWkdX2UKGgGR0Bm0vpKSPluaAdN6ANoCEdAlgRSNCJGfHV9lChoBkdAYymqvvBrOGgHTegDaAhHQJYEUsH0K7Z1fZQoaAZHQFzHpLEk0JpoB03oA2gIR0CWBq8SwnpjdX2UKGgGR0BfStFrl/6PaAdN6ANoCEdAlguCSaEzwnV9lChoBkdAQx8fHPu5SWgHTSYBaAhHQJYM+oZQ53l1fZQoaAZHQGKb66reZXxoB03oA2gIR0CWEwNY8uBddX2UKGgGR0BIpGvfTCtSaAdNBgFoCEdAlhTtOh0yQHV9lChoBkdAYchFFUhmoWgHTegDaAhHQJYejGVAzHl1fZQoaAZHQF/Vo9cKPXFoB03oA2gIR0CWIGj0th/idX2UKGgGR0BlNwhwEQoTaAdN6ANoCEdAliLLXcxj8XV9lChoBkdAZAPgk1Mue2gHTegDaAhHQJYmEJdB0IV1fZQoaAZHQGSwydvsJIFoB03oA2gIR0CWMQZ1mrbQdX2UKGgGR0Bh43nnuAqeaAdN6ANoCEdAljQu7g88tHV9lChoBkdAXuFuFYdQwmgHTegDaAhHQJY1yw/xDst1fZQoaAZHQGKNp3X7LuBoB03oA2gIR0CWSrYa5wwTdX2UKGgGR0BceB64UeuFaAdN6ANoCEdAlks1l9SdfHV9lChoBkdAXp/DO1OTJWgHTegDaAhHQJZh+BpYcNp1fZQoaAZHQGCw5eZ5Rj1oB03oA2gIR0CWZS3cpLEldX2UKGgGR0Bg9+rKeTV2aAdN6ANoCEdAlmiAj+rEL3V9lChoBkdAbllag2606mgHTXsCaAhHQJZqjuqm0md1fZQoaAZHQGRHGXgLqlhoB03oA2gIR0CWbR8zQ/ordX2UKGgGR0Bkh7Z6D5CXaAdN6ANoCEdAlm57DMvAXXV9lChoBkdAZt+nDziCKGgHTegDaAhHQJZzgOz6ab51fZQoaAZHQGUgMVk+X7doB03oA2gIR0CWdSCJXQt0dX2UKGgGR0BhHk56t1ZDaAdN6ANoCEdAln0e76Hj63V9lChoBkdAYUeP+XJHRWgHTegDaAhHQJZ+oPiDM/11fZQoaAZHQFs+RZEDyOJoB03oA2gIR0CWg+8F6iTMdX2UKGgGR0Bnr0fPomojaAdN6ANoCEdAlo4N47ihnXV9lChoBkdAZj0PTXrdFmgHTegDaAhHQJaRCiJwbVB1fZQoaAZHQGWI82itaINoB03oA2gIR0CWkzNDMNc4dX2UKGgGR0Bw+3e3x4IKaAdNngJoCEdAlqBR5s0pE3V9lChoBkdAY6thYNiH7GgHTegDaAhHQJaplQFcIJJ1fZQoaAZHQGZ8Zc1O0sxoB03oA2gIR0CWqf2pAD7qdX2UKGgGR0BgG5PhybQUaAdN6ANoCEdAlq0PLcKw6nV9lChoBkdAZHsAOrhismgHTegDaAhHQJa/Pn8sMAp1fZQoaAZHQGLf+u3c581oB03oA2gIR0CWwT/WDpTudX2UKGgGR0BjNzIxQBPsaAdN6ANoCEdAlsLxk7Omi3V9lChoBkdAXh90jkdWAGgHTegDaAhHQJbGjKISDh91fZQoaAZHQGsFPfbblBBoB000AmgIR0CWxsGL1mJ4dX2UKGgGR0BiyfS4OMESaAdN6ANoCEdAlsuEgSvkinV9lChoBkdAY4X6dlNDdGgHTegDaAhHQJbNiJpFkQR1fZQoaAZHQG/U189fTkRoB02KAmgIR0CWziQvHtF8dX2UKGgGR0AyIGY8dPtVaAdNLAFoCEdAltKuBYmsvXV9lChoBkdAEVHG0eEIxGgHTSMBaAhHQJbUUYsNDtx1fZQoaAZHQGSKj5CWu5loB03oA2gIR0CW1ru63AmBdX2UKGgGR0Bjb+ff4yoGaAdN6ANoCEdAltf5DNQj2XV9lChoBkdAZRLcLSeAeGgHTegDaAhHQJbbocOskpt1fZQoaAZHQGZ5hW5paidoB03oA2gIR0CW5ZfLs8gZdX2UKGgGR0BuKEqhDgIhaAdNOANoCEdAluumw/xDs3V9lChoBkdAY4XIhhYvFmgHTegDaAhHQJbuVcxCY1J1fZQoaAZHQHHYyZ4Oc2BoB012AWgIR0CW7mcAzYVZdX2UKGgGR0Bw2fRb8m8eaAdNsQNoCEdAlvKpnQID5nV9lChoBkdAXOxHy3CsO2gHTegDaAhHQJb5QojOcDt1fZQoaAZHQF8EAt4A0bdoB03oA2gIR0CW+z1y/9HddWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a93d1966ce7a1fa2207cf9b50903de126e23793af49a649d3ae3c58f9054c8de
3
+ size 146754
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d175cd763b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d175cd76440>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d175cd764d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d175cd76560>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d175cd765f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d175cd76680>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d175cd76710>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d175cd767a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d175cd76830>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d175cd768c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d175cd76950>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d175cd769e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d175cb84340>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1693598145736558216,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3c2j325Ga6htl7Op6/gTQN/UW7AzWSuQAAgD8AAIA/zbLgPHvihLodupI7kxYjOJjRYjqTH3W3AACAPwAAgD+aT289XI8QuikFPTtmuYE1fjWkOzBkeDQAAIA/AACAP8BUyj0p6Ge69mR4OWaSbzTvgTg6yNiRuAAAgD8AAIA/mqvYPeHkn7oXCbW6l960ta67hDmFodA5AACAPwAAgD9m0gU9KWBKugLFybOyBGcvRRpVu29itjMAAIA/AACAP5qbArx7IpC6sHGKubrmgbTrv9Y6rKagOAAAgD8AAIA/JsGfvcfz+z5Alzk+YrBxvsNSq7zS2po9AAAAAAAAAAAzq6C8zNVXPmtkHT7MioC+VkyVPOkMOz0AAAAAAAAAABpO871ngaI/hbiHvusCyL5Yizm+IIuIPQAAAAAAAAAAJkgWPqSDVLve4My4TAHmNepApbzL7Pg3AACAPwAAgD8zGwu7/Kq0P1Pg0b2pXA+6C8hlOopFArwAAAAAAAAAAJrW+D0IgaQ99qE1vR8Zeb4th2e7XsjLPQAAAAAAAAAAphCkvSn4PLru13M4ip4SNMHtPztzrYy3AAAAAAAAgD/NEPu7XCM9uknXP7VLsLGw/dWYupNzUzQAAIA/AACAPwDw+zq6Fl4+9naWvLPNg77kzAG8bcpYPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUgCgsbvPWMAWyUTegDjAF0lEdAlRrxFAmiQHV9lChoBkdAYm3LW7OE/WgHTegDaAhHQJUbQo5PuXx1fZQoaAZHQGQNubI91U5oB03oA2gIR0CVJdPrv9cbdX2UKGgGR0Bj6XuAqd6LaAdN6ANoCEdAlScAOjIq9XV9lChoBkdAZRkC6pYLcGgHTegDaAhHQJUocWweNkx1fZQoaAZHQEWdrpJPIn1oB0vuaAhHQJUqdAkcCHR1fZQoaAZHQGVyk384xUNoB03oA2gIR0CVMVswco6TdX2UKGgGR0BeCAuVX3g2aAdN6ANoCEdAlTQVfmcOLHV9lChoBkdAYtIQvHtF8WgHTegDaAhHQJU1hL7Gecx1fZQoaAZHQF7M2rn1WbRoB03oA2gIR0CVOXIfr8iwdX2UKGgGR0BmTWq7yxzJaAdN6ANoCEdAlUWxwyZa3nV9lChoBkdAYDsgte2NN2gHTegDaAhHQJVbtv0h/y51fZQoaAZHQGcBd9Dx9XtoB03oA2gIR0CVXBMh5gPVdX2UKGgGR0Ax80+TvAoHaAdNCwFoCEdAlV8wymALA3V9lChoBkdAY6E0Mw1zhmgHTegDaAhHQJVhGSr5qM51fZQoaAZHQGSD5bhWHUNoB03oA2gIR0CVYRrPdEb6dX2UKGgGR0BmYUaCL/CJaAdN6ANoCEdAlWL75qM3qHV9lChoBkdAYbll4keIVWgHTegDaAhHQJVmp9LHuJF1fZQoaAZHQGBs0K7ZnL9oB03oA2gIR0CVbLy+6Ae8dX2UKGgGR0BlGqi48U22aAdN6ANoCEdAlXfpi/fwZ3V9lChoBkdAYM2ZnctXgmgHTegDaAhHQJV5dOk+HJt1fZQoaAZHQGEFaakRBeJoB03oA2gIR0CVe4tzS1E3dX2UKGgGR0Bls+RYA80UaAdN6ANoCEdAlX4nvlU6xXV9lChoBkdAY6ZFtKqXGGgHTegDaAhHQJWFuuHN5dJ1fZQoaAZHQGR7gc1fmcRoB03oA2gIR0CViByZa3ZxdX2UKGgGR0Bl9MkQf6oEaAdN6ANoCEdAlYlMl5WzW3V9lChoBkdAZcTmFJxvN2gHTegDaAhHQJWUvxZuAI91fZQoaAZHQGU1zgEU0vZoB03oA2gIR0CVqPN7SiM6dX2UKGgGR0BagWlANXo1aAdN6ANoCEdAlalRCY1HfHV9lChoBkdAZhXoicG1QmgHTegDaAhHQJWskt03fhx1fZQoaAZHQGPxXZ5AyEdoB03oA2gIR0CVrvV8CxNZdX2UKGgGR0BfDSbc45tFaAdN6ANoCEdAla73m/336HV9lChoBkdAZCnvaURnOGgHTegDaAhHQJWxe0MPSUl1fZQoaAZHQFs64hUzbexoB03oA2gIR0CVtsx2jfvXdX2UKGgGR0BkJjRQaaTfaAdN6ANoCEdAlb7RvNu+AXV9lChoBkdAZQ3SsKb8WWgHTegDaAhHQJXIcFlkH2R1fZQoaAZHQGUD5S3solVoB03oA2gIR0CVyZgV45cUdX2UKGgGR0Bi+R6hQFcIaAdN6ANoCEdAlcsObNKRMnV9lChoBkdAWkfGS6lLvmgHTegDaAhHQJXNB+SbH6x1fZQoaAZHQGKVTtkWhytoB03oA2gIR0CV07QYDTz/dX2UKGgGR0BmyNj5KvmpaAdN6ANoCEdAldZk+X7cf3V9lChoBkdAZnA0F8ohIWgHTegDaAhHQJXXvqKP4mF1fZQoaAZHQGERzjWCmMxoB03oA2gIR0CV5HGyX2M9dX2UKGgGR0BoG8lXzUZvaAdN6ANoCEdAlerfBzmwJXV9lChoBkdAYo+KaXrt3WgHTegDaAhHQJXreVmjCYV1fZQoaAZHQGLNWTHKfWdoB03oA2gIR0CWAiCdBjWkdX2UKGgGR0Bm0vpKSPluaAdN6ANoCEdAlgRSNCJGfHV9lChoBkdAYymqvvBrOGgHTegDaAhHQJYEUsH0K7Z1fZQoaAZHQFzHpLEk0JpoB03oA2gIR0CWBq8SwnpjdX2UKGgGR0BfStFrl/6PaAdN6ANoCEdAlguCSaEzwnV9lChoBkdAQx8fHPu5SWgHTSYBaAhHQJYM+oZQ53l1fZQoaAZHQGKb66reZXxoB03oA2gIR0CWEwNY8uBddX2UKGgGR0BIpGvfTCtSaAdNBgFoCEdAlhTtOh0yQHV9lChoBkdAYchFFUhmoWgHTegDaAhHQJYejGVAzHl1fZQoaAZHQF/Vo9cKPXFoB03oA2gIR0CWIGj0th/idX2UKGgGR0BlNwhwEQoTaAdN6ANoCEdAliLLXcxj8XV9lChoBkdAZAPgk1Mue2gHTegDaAhHQJYmEJdB0IV1fZQoaAZHQGSwydvsJIFoB03oA2gIR0CWMQZ1mrbQdX2UKGgGR0Bh43nnuAqeaAdN6ANoCEdAljQu7g88tHV9lChoBkdAXuFuFYdQwmgHTegDaAhHQJY1yw/xDst1fZQoaAZHQGKNp3X7LuBoB03oA2gIR0CWSrYa5wwTdX2UKGgGR0BceB64UeuFaAdN6ANoCEdAlks1l9SdfHV9lChoBkdAXp/DO1OTJWgHTegDaAhHQJZh+BpYcNp1fZQoaAZHQGCw5eZ5Rj1oB03oA2gIR0CWZS3cpLEldX2UKGgGR0Bg9+rKeTV2aAdN6ANoCEdAlmiAj+rEL3V9lChoBkdAbllag2606mgHTXsCaAhHQJZqjuqm0md1fZQoaAZHQGRHGXgLqlhoB03oA2gIR0CWbR8zQ/ordX2UKGgGR0Bkh7Z6D5CXaAdN6ANoCEdAlm57DMvAXXV9lChoBkdAZt+nDziCKGgHTegDaAhHQJZzgOz6ab51fZQoaAZHQGUgMVk+X7doB03oA2gIR0CWdSCJXQt0dX2UKGgGR0BhHk56t1ZDaAdN6ANoCEdAln0e76Hj63V9lChoBkdAYUeP+XJHRWgHTegDaAhHQJZ+oPiDM/11fZQoaAZHQFs+RZEDyOJoB03oA2gIR0CWg+8F6iTMdX2UKGgGR0Bnr0fPomojaAdN6ANoCEdAlo4N47ihnXV9lChoBkdAZj0PTXrdFmgHTegDaAhHQJaRCiJwbVB1fZQoaAZHQGWI82itaINoB03oA2gIR0CWkzNDMNc4dX2UKGgGR0Bw+3e3x4IKaAdNngJoCEdAlqBR5s0pE3V9lChoBkdAY6thYNiH7GgHTegDaAhHQJaplQFcIJJ1fZQoaAZHQGZ8Zc1O0sxoB03oA2gIR0CWqf2pAD7qdX2UKGgGR0BgG5PhybQUaAdN6ANoCEdAlq0PLcKw6nV9lChoBkdAZHsAOrhismgHTegDaAhHQJa/Pn8sMAp1fZQoaAZHQGLf+u3c581oB03oA2gIR0CWwT/WDpTudX2UKGgGR0BjNzIxQBPsaAdN6ANoCEdAlsLxk7Omi3V9lChoBkdAXh90jkdWAGgHTegDaAhHQJbGjKISDh91fZQoaAZHQGsFPfbblBBoB000AmgIR0CWxsGL1mJ4dX2UKGgGR0BiyfS4OMESaAdN6ANoCEdAlsuEgSvkinV9lChoBkdAY4X6dlNDdGgHTegDaAhHQJbNiJpFkQR1fZQoaAZHQG/U189fTkRoB02KAmgIR0CWziQvHtF8dX2UKGgGR0AyIGY8dPtVaAdNLAFoCEdAltKuBYmsvXV9lChoBkdAEVHG0eEIxGgHTSMBaAhHQJbUUYsNDtx1fZQoaAZHQGSKj5CWu5loB03oA2gIR0CW1ru63AmBdX2UKGgGR0Bjb+ff4yoGaAdN6ANoCEdAltf5DNQj2XV9lChoBkdAZRLcLSeAeGgHTegDaAhHQJbbocOskpt1fZQoaAZHQGZ5hW5paidoB03oA2gIR0CW5ZfLs8gZdX2UKGgGR0BuKEqhDgIhaAdNOANoCEdAluumw/xDs3V9lChoBkdAY4XIhhYvFmgHTegDaAhHQJbuVcxCY1J1fZQoaAZHQHHYyZ4Oc2BoB012AWgIR0CW7mcAzYVZdX2UKGgGR0Bw2fRb8m8eaAdNsQNoCEdAlvKpnQID5nV9lChoBkdAXOxHy3CsO2gHTegDaAhHQJb5QojOcDt1fZQoaAZHQF8EAt4A0bdoB03oA2gIR0CW+z1y/9HddWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b3da0d901dca3d2b8698093a3c1d84b4481f932710fb431ae67df0727f4e67c
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:910f2127bb480d4f59931913a0354b6571555d33982f3b6f62c51085fb4d2c88
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (178 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 234.66496360162714, "std_reward": 46.12575583729362, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-01T20:19:38.484157"}