--- license: apache-2.0 base_model: alignment-handbook/mistral-7b-sft-constitutional-ai tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized - HuggingFaceH4/cai-conversation-harmless model-index: - name: mistral-7b-dpo-constitutional-ai results: [] --- # mistral-7b-dpo-constitutional-ai This model is a fine-tuned version of [alignment-handbook/mistral-7b-sft-constitutional-ai](https://huggingface.co/alignment-handbook/mistral-7b-sft-constitutional-ai) on the HuggingFaceH4/ultrafeedback_binarized and the HuggingFaceH4/cai-conversation-harmless datasets. It achieves the following results on the evaluation set: - Loss: 0.6064 - Rewards/chosen: -6.2332 - Rewards/rejected: -9.9320 - Rewards/accuracies: 0.6825 - Rewards/margins: 3.6988 - Logps/rejected: -269.0856 - Logps/chosen: -253.0284 - Logits/rejected: -2.8561 - Logits/chosen: -2.8752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.0884 | 1.94 | 1000 | 0.5467 | -3.4828 | -6.0365 | 0.7025 | 2.5536 | -230.1307 | -225.5250 | -2.9599 | -2.9763 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0a0+32f93b1 - Datasets 2.14.6 - Tokenizers 0.15.2