File size: 32,438 Bytes
7718235 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 |
import re
import warnings
from typing import Optional, List, Tuple, Dict
import torch
from torch import _dynamo
_dynamo.config.suppress_errors = True
from torch import nn, Tensor
from model.module.representation import eqStar2PAETransformerSoftMax, eqStar2WeightedPAETransformerSoftMax, eqStar2FullGraphPAETransformerSoftMax
from model.module import output
__all__ = ["PreMode", "PreMode_Star_CON", "PreMode_DIFF", "PreMode_SSP", "PreMode_Mask_Predict", "PreMode_Single"]
def create_model(args, model_class="PreMode"):
shared_args = dict(
num_heads=args["num_heads"],
x_in_channels=args["x_in_channels"],
x_channels=args["x_channels"],
vec_channels=args["vec_channels"],
vec_in_channels=args["vec_in_channels"],
x_hidden_channels=args["x_hidden_channels"],
vec_hidden_channels=args["vec_hidden_channels"],
num_layers=args["num_layers"],
num_edge_attr=args["num_edge_attr"],
num_rbf=args["num_rbf"],
rbf_type=args["rbf_type"],
trainable_rbf=args["trainable_rbf"],
activation=args["activation"],
attn_activation=args["attn_activation"],
neighbor_embedding=args["neighbor_embedding"],
cutoff_lower=args["cutoff_lower"],
cutoff_upper=args["cutoff_upper"],
x_in_embedding_type=args["x_in_embedding_type"],
x_use_msa=args['add_msa'] or args['zero_msa'],
drop_out_rate=args["drop_out"],
)
# representation network
if args["model"] == "equivariant-transformer":
from model.module.representation import eqTransformer
model_fn = eqTransformer
elif args["model"] == "equivariant-transformer-star":
from model.module.representation import eqStarTransformer
model_fn = eqStarTransformer
elif args["model"] == "equivariant-transformer-softmax":
from model.module.representation import eqTransformerSoftMax
model_fn = eqTransformerSoftMax
elif args["model"] == "equivariant-transformer-star-softmax":
from model.module.representation import eqStarTransformerSoftMax
model_fn = eqStarTransformerSoftMax
elif args["model"] == "equivariant-transformer-star2-softmax":
from model.module.representation import eqStar2TransformerSoftMax
model_fn = eqStar2TransformerSoftMax
shared_args["use_lora"]=args["use_lora"]
shared_args["share_kv"]=args["share_kv"]
elif args["model"] == "equivariant-transformer-PAE-star2-softmax":
model_fn = eqStar2PAETransformerSoftMax
shared_args["use_lora"]=args["use_lora"]
shared_args["share_kv"]=args["share_kv"]
args["num_rbf"] = 0 # cancel the rbf in PAE model
elif args["model"] == "equivariant-transformer-weighted-PAE-star2-softmax":
model_fn = eqStar2WeightedPAETransformerSoftMax
shared_args["use_lora"]=args["use_lora"]
shared_args["share_kv"]=args["share_kv"]
args["num_rbf"] = 0 # cancel the rbf in PAE model
elif args["model"] == "equivariant-transformer-PAE-star2-fullgraph-softmax":
model_fn = eqStar2FullGraphPAETransformerSoftMax
shared_args["use_lora"]=args["use_lora"]
shared_args["share_kv"]=args["share_kv"]
elif args["model"] == "transformer-fullgraph-softmax":
from model.module.representation import FullGraphPAETransformerSoftMax
model_fn = FullGraphPAETransformerSoftMax
shared_args["use_lora"]=args["use_lora"]
shared_args["share_kv"]=args["share_kv"]
elif args["model"] == "equivariant-triangular-attention-transformer":
from model.module.representation import eqTriAttnTransformer
model_fn = eqTriAttnTransformer
shared_args["pariwise_state_dim"]=args["vec_hidden_channels"]
elif args["model"] == "equivariant-triangular-star-transformer":
from model.module.representation import eqTriStarTransformer
model_fn = eqTriStarTransformer
elif args["model"] == "equivariant-msa-triangular-star-transformer":
from model.module.representation import eqMSATriStarTransformer
model_fn = eqMSATriStarTransformer
shared_args["ee_channels"]=args["ee_channels"]
shared_args["triangular_update"]=args["triangular_update"]
elif args["model"] == "equivariant-msa-triangular-star-drop-transformer":
from model.module.representation import eqMSATriStarDropTransformer
model_fn = eqMSATriStarDropTransformer
shared_args["ee_channels"]=args["ee_channels"]
shared_args["triangular_update"]=args["triangular_update"]
shared_args["use_lora"]=args["use_lora"]
elif args["model"] == "equivariant-msa-triangular-star-gru-transformer":
from model.module.representation import eqMSATriStarGRUTransformer
model_fn = eqMSATriStarGRUTransformer
shared_args["ee_channels"]=args["ee_channels"]
shared_args["triangular_update"]=args["triangular_update"]
elif args["model"] == "equivariant-msa-triangular-star-drop-gru-transformer":
from model.module.representation import eqMSATriStarDropGRUTransformer
model_fn = eqMSATriStarDropGRUTransformer
shared_args["ee_channels"]=args["ee_channels"]
shared_args["triangular_update"]=args["triangular_update"]
shared_args["use_lora"]=args["use_lora"]
elif args["model"] == "pass-forward":
from model.module.representation import PassForward
model_fn = PassForward
elif args["model"] == "lora-esm":
from model.module.representation import LoRAESM2
model_fn = LoRAESM2
else:
raise ValueError(f'Unknown architecture: {args["model"]}')
representation_model = model_fn(
**shared_args,
)
# create output network
if "MaskPredict" in args["output_model"]:
output_model = getattr(output, args["output_model"])(
args=args,
lm_weight=representation_model.node_x_proj.weight,
)
elif "ESM" in args["output_model"]:
# get lm_weight from esm2
import esm
esm_model, _ = esm.pretrained.esm2_t33_650M_UR50D()
output_model = output.build_output_model(
args["output_model"],
args=args,
lm_head=esm_model.lm_head,
)
else:
# for non-clinvar tasks, use non_uniform init
if args["init_fn"] is None:
if args["data_type"] != "ClinVar":
args["init_fn"] = "non_uniform"
else:
args["init_fn"] = "uniform"
if hasattr(output, args["output_model"]):
output_model = getattr(output, args["output_model"])(
args=args,
)
else:
output_model = output.build_output_model(args["output_model"], args=args)
# combine representation and output network
model = globals()[model_class](
representation_model,
output_model,
alt_projector=args["alt_projector"],
)
return model
def create_model_and_load(args, model_class="PreMode"):
model = create_model(args, model_class)
state_dict = torch.load(args["load_model"], map_location="cpu")
# The following are for backward compatibility with models created when atomref was
# the only supported prior.
output_model_state_dict = {}
representation_model_state_dict = {}
for key in state_dict.keys():
# delete _orig_mod
if key.startswith("_orig_mod"):
newkey = key.replace("_orig_mod.", "")
else:
newkey = key
if newkey.startswith("output_model"):
output_model_state_dict[newkey.replace("output_model.", "")] = state_dict[key]
elif newkey.startswith("representation_model"):
if newkey.startswith("representation_model.node_x_proj.weight"):
if args["partial_load_model"]:
embedding_weight = state_dict[key]
print('only use the first 26 embedding of MaskPredict')
embedding_weight = embedding_weight[:26] # exclude the embedding of mask
representation_model_state_dict["node_x_proj.weight"] = \
torch.concat((embedding_weight,
torch.zeros(args["x_in_channels"] - embedding_weight.shape[0],
embedding_weight.shape[1]))).T
representation_model_state_dict["node_x_proj.bias"] = \
torch.zeros(args["x_channels"])
else:
representation_model_state_dict[newkey.replace("representation_model.", "")] = state_dict[key]
else:
representation_model_state_dict[newkey.replace("representation_model.", "")] = state_dict[key]
model.representation_model.load_state_dict(representation_model_state_dict, strict=False)
if args["data_type"] == "ClinVar" \
or args['loss_fn'] == "combined_loss" \
or args['loss_fn'] == "weighted_combined_loss" \
or args['use_output_head']:
# or args['loss_fn'] == "weighted_loss":
try:
# check the output network module dimension
if output_model_state_dict['output_network.0.weight'].shape[0] != args['output_dim']:
# if output network is EquivariantAttnOneSiteScalar, we can use it
if "OneSite" in args['output_model'] and args['use_output_head']:
rep_time = args['output_dim'] // output_model_state_dict['output_network.0.weight'].shape[0]
# repeat the weight and bias repeat_interleave
output_model_state_dict['output_network.0.weight'] = output_model_state_dict['output_network.0.weight'].repeat_interleave(rep_time, 0)
output_model_state_dict['output_network.0.bias'] = output_model_state_dict['output_network.0.bias'].repeat_interleave(rep_time)
else:
print('Warning: output network module dimension is not equal to output_dim, now changing the dimension')
output_network_weight = torch.concat(
(output_model_state_dict['output_network.0.weight'],
torch.zeros(args['output_dim'] - output_model_state_dict['output_network.0.weight'].shape[0],
output_model_state_dict['output_network.0.weight'].shape[1])
)
)
output_network_bias = torch.concat(
(output_model_state_dict['output_network.0.bias'],
torch.zeros(args['output_dim'] - output_model_state_dict['output_network.0.bias'].shape[0])
)
)
output_model_state_dict['output_network.0.weight'] = output_network_weight
output_model_state_dict['output_network.0.bias'] = output_network_bias
model.output_model.load_state_dict(output_model_state_dict, strict=False)
print(f"loaded the output model state dict including the output module")
except RuntimeError:
print(f"Warning: Didn't load output model state dict because keys didn't match.")
else:
print(f"Warning: Didn't load output model because task is not ClinVar")
return model
def load_model(filepath, args=None, device="cpu", model_class="PreMode", **kwargs):
ckpt = torch.load(filepath, map_location="cpu")
if args is None:
args = ckpt["hyper_parameters"]
for key, value in kwargs.items():
if not key in args:
warnings.warn(f"Unknown hyperparameter: {key}={value}")
args[key] = value
model = create_model(args, model_class=model_class)
state_dict = {re.sub(r"^model\.", "", k): v for k, v in ckpt["state_dict"].items()}
model.load_state_dict(state_dict)
return model.to(device)
class PreMode(nn.Module):
def __init__(
self,
representation_model,
output_model,
alt_projector=None,
):
super(PreMode, self).__init__()
self.representation_model = representation_model
self.output_model = output_model
if alt_projector is not None:
# need to have a linear layer to project the concatenated vector to the same dimension as the original vector
out_dim = representation_model.x_channels if representation_model.x_in_channels is None else representation_model.x_in_channels
self.alt_linear = nn.Linear(alt_projector, out_dim, bias=False)
else:
self.alt_linear = None
self.reset_parameters()
def reset_parameters(self):
self.representation_model.reset_parameters()
self.output_model.reset_parameters()
def forward(
self,
x: Tensor,
x_mask: Tensor,
x_alt: Tensor,
pos: Tensor,
edge_index: Tensor,
edge_index_star: Tensor = None,
edge_attr: Tensor = None,
edge_attr_star: Tensor = None,
node_vec_attr: Tensor = None,
batch: Optional[Tensor] = None,
extra_args: Optional[Dict[str, Tensor]] = None,
return_attn: bool = False,
) -> Tuple[Tensor, Tensor, List]:
# assert x.dim() == 2
batch = torch.zeros(x.shape[0], dtype=torch.int64, device=x.device) if batch is None else batch
# get the graph representation of origin protein first
# if there is msa in x, split it
if (self.representation_model.x_in_channels is not None and x.shape[1] > self.representation_model.x_in_channels):
x_orig, _ = x[:, :self.representation_model.x_in_channels], x[:, self.representation_model.x_in_channels:]
elif x.shape[1] > self.representation_model.x_channels:
x_orig, _ = x[:, :self.representation_model.x_channels], x[:, self.representation_model.x_channels:]
else:
x_orig = x
if self.alt_linear is not None:
x_alt = self.alt_linear(x_alt)
# update x to alt aa
x = x * x_mask + x_alt * x_mask
# run the potentially wrapped representation model
if extra_args is not None and "y_mask" in extra_args:
x, v, pos, edge_attr, batch, attn_weight_layers = self.representation_model(
x=x,
pos=pos,
batch=batch,
edge_index=edge_index,
edge_index_star=edge_index_star,
edge_attr=edge_attr,
edge_attr_star=edge_attr_star,
node_vec_attr=node_vec_attr,
mask=extra_args["y_mask"].to(x.device, non_blocking=True),
return_attn=return_attn, )
else:
x, v, pos, edge_attr, batch, attn_weight_layers = self.representation_model(
x=x,
pos=pos,
batch=batch,
edge_index=edge_index,
edge_index_star=edge_index_star,
edge_attr=edge_attr,
edge_attr_star=edge_attr_star,
node_vec_attr=node_vec_attr,
return_attn=return_attn, )
# apply the output network
x = self.output_model.pre_reduce(x, v, pos, batch)
# aggregate residues
if extra_args is not None and "y_mask" in extra_args:
x = x * extra_args["y_mask"].unsqueeze(2).to(x.device, non_blocking=True)
# reduce nodes
x, attn_out = self.output_model.reduce(x - x_orig, edge_index, edge_attr, batch)
# x = self.output_model.reduce(x, edge_index, edge_attr, batch)
attn_weight_layers.append(attn_out)
# apply output model after reduction
y = self.output_model.post_reduce(x)
return y, x, attn_weight_layers
class PreMode_Star_CON(nn.Module):
def __init__(
self,
representation_model,
output_model,
alt_projector=None,
):
super(PreMode_Star_CON, self).__init__()
self.representation_model = representation_model
self.output_model = output_model
self.alt_projector = alt_projector
if alt_projector is not None:
# need to have a linear layer to project the concatenated vector to the same dimension as the original vector
out_dim = representation_model.x_channels if representation_model.x_in_channels is None else representation_model.x_in_channels
self.alt_linear = nn.Sequential(nn.Linear(alt_projector, out_dim, bias=False), nn.SiLU())
else:
self.alt_linear = None
self.reset_parameters()
def reset_parameters(self):
self.representation_model.reset_parameters()
self.output_model.reset_parameters()
def forward(
self,
x: Tensor,
x_mask: Tensor,
x_alt: Tensor,
pos: Tensor,
edge_index: Tensor,
edge_index_star: Tensor = None,
edge_attr: Tensor = None,
edge_attr_star: Tensor = None,
node_vec_attr: Tensor = None,
batch: Optional[Tensor] = None,
extra_args: Optional[Dict[str, Tensor]] = None,
return_attn: bool = False,
) -> Tuple[Tensor, Tensor, List]:
# assert x.dim() == 2
batch = torch.zeros(x.shape[0], dtype=torch.int64, device=x.device) if batch is None else batch
# get the graph representation of origin protein first
# if there is msa in x, split it
if self.representation_model.x_in_channels is not None:
if x.shape[-1] > self.representation_model.x_in_channels:
x, msa = x[..., :self.representation_model.x_in_channels], x[..., self.representation_model.x_in_channels:]
split = True
else:
split = False
elif x.shape[-1] > self.representation_model.x_channels:
x, msa = x[..., :self.representation_model.x_channels], x[..., self.representation_model.x_channels:]
split = True
else:
split = False
if len(x.shape) == 3 or len(x_mask.shape) == 1:
x_mask = x_mask.unsqueeze(-1)
else:
x_mask = x_mask[:, 0].unsqueeze(1)
if self.alt_linear is not None:
x_alt = x_alt[..., :self.alt_projector]
x_alt = self.alt_linear(x_alt)
else:
x_alt = x_alt[..., :x.shape[-1]]
# update x to alt aa
x = x * x_mask + x_alt * (~x_mask)
# concat with msa
if split:
x = torch.cat((x, msa), dim=-1)
# run the potentially wrapped representation model
# wrap input features
input = {"x": x,
"pos": pos,
"batch": batch,
"edge_index": edge_index,
"edge_index_star": edge_index_star,
"edge_attr": edge_attr,
"edge_attr_star": edge_attr_star,
"node_vec_attr": node_vec_attr,
"return_attn": return_attn}
if extra_args is not None and "y_mask" in extra_args:
input["mask"] = extra_args["y_mask"].to(x.device, non_blocking=True)
if extra_args is not None and "x_padding_mask" in extra_args:
input["x_padding_mask"] = extra_args["x_padding_mask"].to(x.device, non_blocking=True)
if isinstance(self.representation_model, eqStar2PAETransformerSoftMax) or \
isinstance(self.representation_model, eqStar2WeightedPAETransformerSoftMax) or \
isinstance(self.representation_model, eqStar2FullGraphPAETransformerSoftMax):
# means we are using PAE model
input["plddt"] = extra_args["plddt"].to(x.device, non_blocking=True) \
if "plddt" in extra_args else None
input["edge_confidence"] = extra_args["edge_confidence"].to(x.device, non_blocking=True) \
if "edge_confidence" in extra_args else None
input["edge_confidence_star"] = extra_args["edge_confidence_star"].to(x.device, non_blocking=True) \
if "edge_confidence_star" in extra_args else None
x, v, pos, edge_attr, batch, attn_weight_layers = self.representation_model(**input)
# apply the output network
x = self.output_model.pre_reduce(x, v, pos, batch)
# aggregate residues
if extra_args is not None and "y_mask" in extra_args:
x = x * extra_args["y_mask"].unsqueeze(2).to(x.device, non_blocking=True)
# if edge_attr is same shape as edge_index_star, it means that edge_attr is actually updated to edge_attr_star
if len(x.shape) < 3:
# # for nodes not connected by edges, set their x to 0
# reduce nodes by star graph
end_node_count = edge_index_star[1].unique(return_counts=True)
end_nodes = end_node_count[0][end_node_count[1] > 1]
if edge_attr is not None and edge_attr.shape[0] == edge_index_star.shape[1]:
x, attn_out = self.output_model.reduce(x,
edge_index_star[:, torch.isin(edge_index_star[1], end_nodes)],
edge_attr[torch.isin(edge_index_star[1], end_nodes), :],
batch)
else:
# if edge_attr is not updated, use edge_attr_star
x, attn_out = self.output_model.reduce(x,
edge_index_star[:, torch.isin(edge_index_star[1], end_nodes)],
edge_attr_star[torch.isin(edge_index_star[1], end_nodes), :],
batch)
else:
x, attn_out = self.output_model.reduce(
x, (~x_mask).squeeze(2),
edge_attr[0], edge_attr[1], edge_attr[2], edge_attr[3],
input["x_padding_mask"])
if 'score_mask' not in extra_args:
x = x.unsqueeze(1)
# x = self.output_model.reduce(x, edge_index, edge_attr, batch)
attn_weight_layers.append(attn_out)
# apply output model after reduction
# if esm_mask is in extra_args, it means we are using esm model
if "esm_mask" in extra_args:
y = self.output_model.post_reduce(x, extra_args["esm_mask"].to(x.device, non_blocking=True))
else:
y = self.output_model.post_reduce(x)
return y, x, attn_weight_layers
class PreMode_SSP(PreMode):
def __init__(
self,
representation_model,
output_model,
vec_in_channels=4,
):
super(PreMode_SSP, self).__init__(representation_model=representation_model,
output_model=output_model,)
self.vec_reconstruct = nn.Linear(representation_model.vec_channels, vec_in_channels, bias=False)
def forward(
self,
x: Tensor,
x_mask: Tensor,
x_alt: Tensor,
pos: Tensor,
edge_index: Tensor,
edge_index_star: Tensor = None,
edge_attr: Tensor = None,
edge_attr_star: Tensor = None,
edge_vec: Tensor = None,
edge_vec_star: Tensor = None,
node_vec_attr: Tensor = None,
batch: Optional[Tensor] = None,
extra_args: Optional[Dict[str, Tensor]] = None,
return_attn: bool = False,
) -> Tuple[Tensor, Tensor, Tensor, Tensor, List]:
assert x.dim() == 2 and x.dtype == torch.float
batch = torch.zeros(x.shape[0], dtype=torch.int64, device=x.device) if batch is None else batch
# get the graph representation of origin protein first
x_orig = x
# update x to alt aa
x = x * x_mask + x_alt
# run the potentially wrapped representation model
x, v, pos, edge_attr, batch, attn_weight_layers = self.representation_model(
x=x,
pos=pos,
batch=batch,
edge_index=edge_index,
edge_index_star=edge_index_star,
edge_attr=edge_attr,
edge_attr_star=edge_attr_star,
node_vec_attr=node_vec_attr,
return_attn=return_attn, )
vec = self.vec_reconstruct(v)
# apply the output network
x_graph: Tensor = x
x = self.output_model.pre_reduce(x, v, pos, batch)
# aggregate residues
x, _ = self.output_model.reduce(x - x_orig, edge_index, edge_attr, batch)
# apply output model after reduction
y = self.output_model.post_reduce(x)
return x_graph, vec, y, x, attn_weight_layers
class PreMode_DIFF(PreMode):
def __init__(
self,
representation_model,
output_model,
alt_projector=None,
):
super(PreMode_DIFF, self).__init__(representation_model=representation_model,
output_model=output_model,)
def forward(
self,
x: Tensor,
x_mask: Tensor,
x_alt: Tensor,
pos: Tensor,
edge_index: Tensor,
edge_index_star: Tensor = None,
edge_attr: Tensor = None,
edge_attr_star: Tensor = None,
edge_vec: Tensor = None,
edge_vec_star: Tensor = None,
node_vec_attr: Tensor = None,
batch: Optional[Tensor] = None,
extra_args: Optional[Dict[str, Tensor]] = None,
return_attn: bool = False,
) -> Tuple[Tensor, Tensor, List]:
# assert x.dim() == 2 and x.dtype == torch.float
batch = torch.zeros(x.shape[0], dtype=torch.int64, device=x.device) if batch is None else batch
# get the graph representation of origin protein first
x_orig, v, pos, _, batch, attn_weight_layers_ref = self.representation_model(
x=x,
pos=pos,
batch=batch,
edge_index=edge_index,
edge_index_star=edge_index_star,
edge_attr=edge_attr,
edge_attr_star=edge_attr_star,
node_vec_attr=node_vec_attr,
return_attn=return_attn, )
x_orig = self.output_model.pre_reduce(x_orig, v, pos, batch)
# update x to alt aa
x = x * x_mask + x_alt
# run the potentially wrapped representation model
x, v, pos, edge_attr, batch, attn_weight_layers_alt = self.representation_model(
x=x,
pos=pos,
batch=batch,
edge_index=edge_index,
edge_index_star=edge_index_star,
edge_attr=edge_attr,
edge_attr_star=edge_attr_star,
node_vec_attr=node_vec_attr,
return_attn=return_attn, )
# apply the output network
x = self.output_model.pre_reduce(x, v, pos, batch)
# aggregate residues
x, _ = self.output_model.reduce(x - x_orig, edge_index, edge_attr, batch)
# apply output model after reduction
y = self.output_model.post_reduce(x)
return y, x, [attn_weight_layers_ref, attn_weight_layers_alt]
class PreMode_Mask_Predict(PreMode):
def __init__(
self,
representation_model,
output_model,
alt_projector=None,
):
super(PreMode_Mask_Predict, self).__init__(representation_model=representation_model,
output_model=output_model,)
def forward(
self,
x: Tensor,
x_mask: Tensor,
x_alt: Tensor,
pos: Tensor,
edge_index: Tensor,
edge_index_star: Tensor = None,
edge_attr: Tensor = None,
edge_attr_star: Tensor = None,
edge_vec: Tensor = None,
edge_vec_star: Tensor = None,
node_vec_attr: Tensor = None,
batch: Optional[Tensor] = None,
extra_args: Optional[Dict[str, Tensor]] = None,
return_attn: bool = False,
) -> Tuple[Tensor, Tensor, List]:
# assert x.dim() == 2 and x.dtype == torch.float
batch = torch.zeros(x.shape[0], dtype=torch.int64, device=x.device) if batch is None else batch
# update x to alt aa
x = x * x_mask + x_alt
# get the graph representation of origin protein first
if "y_mask" in extra_args:
# means that it is non-graph model
x_embed, v, pos, _, batch, attn_weight_layers_ref = self.representation_model(
x=x,
pos=pos,
mask=extra_args["y_mask"].to(x.device, non_blocking=True),
return_attn=return_attn, )
else:
x_embed, v, pos, _, batch, attn_weight_layers_ref = self.representation_model(
x=x,
pos=pos,
batch=batch,
edge_index=edge_index,
edge_index_star=edge_index_star,
edge_attr=edge_attr,
edge_attr_star=edge_attr_star,
node_vec_attr=node_vec_attr,
return_attn=return_attn, )
# pre reduce is to reduce to one hot alphabet
y = self.output_model.pre_reduce(x_embed, v, pos, batch)
return y, y, attn_weight_layers_ref
class PreMode_Single(PreMode):
def __init__(
self,
representation_model,
output_model,
alt_projector=None,
):
super(PreMode_Single, self).__init__(representation_model=representation_model,
output_model=output_model,)
def forward(
self,
x: Tensor,
x_mask: Tensor,
x_alt: Tensor,
pos: Tensor,
edge_index: Tensor,
edge_index_star: Tensor = None,
edge_attr: Tensor = None,
edge_attr_star: Tensor = None,
edge_vec: Tensor = None,
edge_vec_star: Tensor = None,
node_vec_attr: Tensor = None,
batch: Optional[Tensor] = None,
extra_args: Optional[Dict[str, Tensor]] = None,
return_attn: bool = False,
) -> Tuple[Tensor, Tensor, List]:
assert x.dim() == 2
batch = torch.zeros(x.shape[0], dtype=torch.int64, device=x.device) if batch is None else batch
# get the graph representation of origin protein first
# if there is msa in x, split it
# if there is msa in x, split it
if (self.representation_model.x_in_channels is not None and x.shape[1] > self.representation_model.x_in_channels):
x, msa = x[:, :self.representation_model.x_in_channels], x[:, self.representation_model.x_in_channels:]
split = True
elif x.shape[1] > self.representation_model.x_channels:
x, msa = x[:, :self.representation_model.x_channels], x[:, self.representation_model.x_channels:]
split = True
else:
split = False
x_mask = x_mask[:, 0]
if self.alt_linear is not None:
x_alt = x_alt[:, :self.alt_projector]
x_alt = self.alt_linear(x_alt)
else:
x_alt = x_alt[:, :x.shape[1]]
# update x to alt aa
x = x * x_mask.unsqueeze(1) + x_alt * (~x_mask).unsqueeze(1)
# concat with msa
if split:
x = torch.cat((x, msa), dim=1)
# run the potentially wrapped representation model
x, v, pos, edge_attr, batch, attn_weight_layers = self.representation_model(
x=x,
pos=pos,
batch=batch,
edge_index=edge_index,
edge_index_star=edge_index_star,
edge_attr=edge_attr,
edge_attr_star=edge_attr_star,
node_vec_attr=node_vec_attr,
return_attn=return_attn, )
# apply the output network
x = self.output_model.pre_reduce(x, v, pos, batch)
# aggregate residues
x, _ = self.output_model.reduce(x, edge_index, edge_attr, batch)
# apply output model after reduction
y = self.output_model.post_reduce(x)
return y, x, attn_weight_layers
|