Update README.md
Browse files
README.md
CHANGED
@@ -26,8 +26,20 @@ An experimental version of IP-Adapter-FaceID: we use face ID embedding from a fa
|
|
26 |
|
27 |
![results](./ip-adapter-faceid.jpg)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
## Usage
|
30 |
|
|
|
|
|
31 |
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding:
|
32 |
|
33 |
```python
|
@@ -92,6 +104,75 @@ images = ip_model.generate(
|
|
92 |
|
93 |
```
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
## Limitations and Bias
|
97 |
- The model does not achieve perfect photorealism and ID consistency.
|
|
|
26 |
|
27 |
![results](./ip-adapter-faceid.jpg)
|
28 |
|
29 |
+
|
30 |
+
**Update 2023/12/27**:
|
31 |
+
|
32 |
+
IP-Adapter-FaceID-Plus: face ID embedding (for face ID) + CLIP image embedding (for face structure)
|
33 |
+
|
34 |
+
<div align="center">
|
35 |
+
|
36 |
+
![results](./faceid-plus.jpg)
|
37 |
+
</div>
|
38 |
+
|
39 |
## Usage
|
40 |
|
41 |
+
### IP-Adapter-FaceID
|
42 |
+
|
43 |
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding:
|
44 |
|
45 |
```python
|
|
|
104 |
|
105 |
```
|
106 |
|
107 |
+
### IP-Adapter-FaceID-Plus
|
108 |
+
|
109 |
+
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding and face image:
|
110 |
+
|
111 |
+
```python
|
112 |
+
|
113 |
+
import cv2
|
114 |
+
from insightface.app import FaceAnalysis
|
115 |
+
from insightface.utils import face_align
|
116 |
+
|
117 |
+
|
118 |
+
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
119 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
120 |
+
|
121 |
+
image = cv2.imread("person.jpg")
|
122 |
+
faces = app.get(image)
|
123 |
+
|
124 |
+
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
125 |
+
face_image = face_align.norm_crop(image, landmark=faces[0].kps, image_size=224) # you can also segment the face
|
126 |
+
```
|
127 |
+
|
128 |
+
Then, you can generate images conditioned on the face embeddings:
|
129 |
+
|
130 |
+
```python
|
131 |
+
|
132 |
+
import torch
|
133 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
134 |
+
from PIL import Image
|
135 |
+
|
136 |
+
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus
|
137 |
+
|
138 |
+
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
|
139 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
140 |
+
image_encoder_path = "h94/IP-Adapter/models/image_encoder"
|
141 |
+
ip_ckpt = "ip-adapter-faceid-plus_sd15.bin"
|
142 |
+
device = "cuda"
|
143 |
+
|
144 |
+
noise_scheduler = DDIMScheduler(
|
145 |
+
num_train_timesteps=1000,
|
146 |
+
beta_start=0.00085,
|
147 |
+
beta_end=0.012,
|
148 |
+
beta_schedule="scaled_linear",
|
149 |
+
clip_sample=False,
|
150 |
+
set_alpha_to_one=False,
|
151 |
+
steps_offset=1,
|
152 |
+
)
|
153 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
|
154 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
155 |
+
base_model_path,
|
156 |
+
torch_dtype=torch.float16,
|
157 |
+
scheduler=noise_scheduler,
|
158 |
+
vae=vae,
|
159 |
+
feature_extractor=None,
|
160 |
+
safety_checker=None
|
161 |
+
)
|
162 |
+
|
163 |
+
# load ip-adapter
|
164 |
+
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device)
|
165 |
+
|
166 |
+
# generate image
|
167 |
+
prompt = "photo of a woman in red dress in a garden"
|
168 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
|
169 |
+
|
170 |
+
images = ip_model.generate(
|
171 |
+
prompt=prompt, negative_prompt=negative_prompt, face_image=face_image, faceid_embeds=faceid_embeds, num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
|
172 |
+
)
|
173 |
+
|
174 |
+
```
|
175 |
+
|
176 |
|
177 |
## Limitations and Bias
|
178 |
- The model does not achieve perfect photorealism and ID consistency.
|