hahafofo commited on
Commit
3da4240
1 Parent(s): d96d468
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ training_args.bin filter=lfs diff=lfs merge=lfs -text
37
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
38
+ qwen.tiktoken filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,24 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+
5
+
6
+ 模型使用在生成稳定扩散(Stable Diffusion)的提示语(prompt)。它主要通过中文生成相应的英文提示语,充分利用Qwen的能力,支持包括古诗词在内的多种形式进行提示语的生成。此模型基于35k 条数据进行特定于任务的微调(SFT)
7
+
8
+ 模型的对应代码已发布于GitHub,您可以通过以下链接访问并使用SDXL-Turbo进行快速测试生成的提示语:
9
+ [https://github.com/zhongpei/Qwen-SDXL-Turbo.git](https://github.com/zhongpei/Qwen-SDXL-Turbo.git)
10
+
11
+
12
+ This model is designed to generate prompts for Stable Diffusion. It primarily translates Chinese into corresponding English prompts, leveraging the capabilities of Qwen, and supports a variety of formats including classical poetry for prompt generation. The model has been fine-tuned specifically for this task (SFT) using a dataset of 35k entries.
13
+
14
+ The corresponding code for the model is available on GitHub. You can access and use SDXL-Turbo for rapid test generation of prompts through the following link:
15
+ [https://github.com/zhongpei/Qwen-SDXL-Turbo.git](https://github.com/zhongpei/Qwen-SDXL-Turbo.git)
16
+
17
+ **参数表格(Parameters Table):**
18
+
19
+ | 参数 | 值 |
20
+ | -------------- | -------- |
21
+ | 数据量(Data) | 35k |
22
+ | 训练周期(Epochs) | 1 |
23
+ | 学习率(Learning Rate) | 1e-05 |
24
+ | 损失值(Loss) | 1.03 |
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./models/Qwen-1_8B-Chat",
3
+ "architectures": [
4
+ "QWenLMHeadModel"
5
+ ],
6
+ "attn_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_qwen.QWenConfig",
9
+ "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
10
+ },
11
+ "bf16": true,
12
+ "emb_dropout_prob": 0.0,
13
+ "fp16": false,
14
+ "fp32": false,
15
+ "hidden_size": 2048,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 11008,
18
+ "kv_channels": 128,
19
+ "layer_norm_epsilon": 1e-06,
20
+ "max_position_embeddings": 8192,
21
+ "model_type": "qwen",
22
+ "no_bias": true,
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "onnx_safe": null,
26
+ "rotary_emb_base": 10000,
27
+ "rotary_pct": 1.0,
28
+ "scale_attn_weights": true,
29
+ "seq_length": 8192,
30
+ "softmax_in_fp32": false,
31
+ "tie_word_embeddings": false,
32
+ "tokenizer_class": "QWenTokenizer",
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.35.2",
35
+ "use_cache": false,
36
+ "use_cache_kernel": false,
37
+ "use_cache_quantization": false,
38
+ "use_dynamic_ntk": true,
39
+ "use_flash_attn": true,
40
+ "use_logn_attn": true,
41
+ "vocab_size": 151936
42
+ }
configuration_qwen.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from transformers import PretrainedConfig
7
+
8
+
9
+ class QWenConfig(PretrainedConfig):
10
+ model_type = "qwen"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=151936,
16
+ hidden_size=4096,
17
+ num_hidden_layers=32,
18
+ num_attention_heads=32,
19
+ emb_dropout_prob=0.0,
20
+ attn_dropout_prob=0.0,
21
+ layer_norm_epsilon=1e-6,
22
+ initializer_range=0.02,
23
+ max_position_embeddings=8192,
24
+ scale_attn_weights=True,
25
+ use_cache=True,
26
+ bf16=False,
27
+ fp16=False,
28
+ fp32=False,
29
+ kv_channels=128,
30
+ rotary_pct=1.0,
31
+ rotary_emb_base=10000,
32
+ use_dynamic_ntk=True,
33
+ use_logn_attn=True,
34
+ use_flash_attn="auto",
35
+ intermediate_size=22016,
36
+ no_bias=True,
37
+ tie_word_embeddings=False,
38
+ use_cache_quantization=False,
39
+ use_cache_kernel=False,
40
+ softmax_in_fp32=False,
41
+ **kwargs,
42
+ ):
43
+ self.vocab_size = vocab_size
44
+ self.hidden_size = hidden_size
45
+ self.intermediate_size = intermediate_size
46
+ self.num_hidden_layers = num_hidden_layers
47
+ self.num_attention_heads = num_attention_heads
48
+ self.emb_dropout_prob = emb_dropout_prob
49
+ self.attn_dropout_prob = attn_dropout_prob
50
+ self.layer_norm_epsilon = layer_norm_epsilon
51
+ self.initializer_range = initializer_range
52
+ self.scale_attn_weights = scale_attn_weights
53
+ self.use_cache = use_cache
54
+ self.max_position_embeddings = max_position_embeddings
55
+ self.bf16 = bf16
56
+ self.fp16 = fp16
57
+ self.fp32 = fp32
58
+ self.kv_channels = kv_channels
59
+ self.rotary_pct = rotary_pct
60
+ self.rotary_emb_base = rotary_emb_base
61
+ self.use_dynamic_ntk = use_dynamic_ntk
62
+ self.use_logn_attn = use_logn_attn
63
+ self.use_flash_attn = use_flash_attn
64
+ self.no_bias = no_bias
65
+ self.use_cache_quantization = use_cache_quantization
66
+ self.use_cache_kernel = use_cache_kernel
67
+ self.softmax_in_fp32 = softmax_in_fp32
68
+ super().__init__(
69
+ tie_word_embeddings=tie_word_embeddings,
70
+ **kwargs
71
+ )
cpp_kernels.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils import cpp_extension
2
+ import pathlib
3
+ import os
4
+ import subprocess
5
+
6
+ def _get_cuda_bare_metal_version(cuda_dir):
7
+ raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
8
+ universal_newlines=True)
9
+ output = raw_output.split()
10
+ release_idx = output.index("release") + 1
11
+ release = output[release_idx].split(".")
12
+ bare_metal_major = release[0]
13
+ bare_metal_minor = release[1][0]
14
+
15
+ return raw_output, bare_metal_major, bare_metal_minor
16
+
17
+ def _create_build_dir(buildpath):
18
+ try:
19
+ os.mkdir(buildpath)
20
+ except OSError:
21
+ if not os.path.isdir(buildpath):
22
+ print(f"Creation of the build directory {buildpath} failed")
23
+
24
+ # Check if cuda 11 is installed for compute capability 8.0
25
+ cc_flag = []
26
+ _, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
27
+ if int(bare_metal_major) >= 11:
28
+ cc_flag.append('-gencode')
29
+ cc_flag.append('arch=compute_80,code=sm_80')
30
+ if int(bare_metal_minor) >= 7:
31
+ cc_flag.append('-gencode')
32
+ cc_flag.append('arch=compute_90,code=sm_90')
33
+
34
+ # Build path
35
+ srcpath = pathlib.Path(__file__).parent.absolute()
36
+ buildpath = srcpath / 'build'
37
+ _create_build_dir(buildpath)
38
+
39
+ def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
40
+ return cpp_extension.load(
41
+ name=name,
42
+ sources=sources,
43
+ build_directory=buildpath,
44
+ extra_cflags=['-O3', ],
45
+ extra_cuda_cflags=['-O3',
46
+ '-gencode', 'arch=compute_70,code=sm_70',
47
+ '--use_fast_math'] + extra_cuda_flags + cc_flag,
48
+ verbose=1
49
+ )
50
+
51
+ extra_flags = []
52
+
53
+ cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
54
+ "./cache_autogptq_cuda_kernel_256.cu"]
55
+ cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "chatml",
3
+ "do_sample": true,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 512,
6
+ "max_window_size": 6144,
7
+ "pad_token_id": 151643,
8
+ "repetition_penalty": 1.1,
9
+ "top_k": 0,
10
+ "top_p": 0.8,
11
+ "transformers_version": "4.35.2"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc356f5820742b8177546b3e4c2efb6bae553c2906fdec3fceb66fb1679a90d8
3
+ size 3673678408
modeling_qwen.py ADDED
@@ -0,0 +1,1378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import copy
7
+ import importlib
8
+ import math
9
+ import pathlib
10
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
11
+
12
+ import torch
13
+ import torch.nn.functional as F
14
+ import torch.utils.checkpoint
15
+ import warnings
16
+
17
+ from torch.nn import CrossEntropyLoss
18
+ from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
19
+ from transformers.generation.logits_process import LogitsProcessorList
20
+
21
+ if TYPE_CHECKING:
22
+ from transformers.generation.streamers import BaseStreamer
23
+ from transformers.generation.utils import GenerateOutput
24
+ from transformers.modeling_outputs import (
25
+ BaseModelOutputWithPast,
26
+ CausalLMOutputWithPast,
27
+ )
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.utils import logging
30
+
31
+ try:
32
+ from einops import rearrange
33
+ except ImportError:
34
+ rearrange = None
35
+ from torch import nn
36
+
37
+ SUPPORT_CUDA = torch.cuda.is_available()
38
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
39
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
40
+ SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
41
+
42
+
43
+ from .configuration_qwen import QWenConfig
44
+ from .qwen_generation_utils import (
45
+ HistoryType,
46
+ make_context,
47
+ decode_tokens,
48
+ get_stop_words_ids,
49
+ StopWordsLogitsProcessor,
50
+ )
51
+
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+ _CHECKPOINT_FOR_DOC = "qwen"
56
+ _CONFIG_FOR_DOC = "QWenConfig"
57
+
58
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
59
+
60
+ _ERROR_BAD_CHAT_FORMAT = """\
61
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
62
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
63
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
64
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
65
+ """
66
+
67
+ _SENTINEL = object()
68
+ _ERROR_STREAM_IN_CHAT = """\
69
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
70
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
71
+ """
72
+
73
+ _ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
74
+ We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
75
+ 检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
76
+ """
77
+
78
+ apply_rotary_emb_func = None
79
+ rms_norm = None
80
+ flash_attn_unpadded_func = None
81
+ flash_attn_func = None
82
+
83
+ def _import_flash_attn():
84
+ global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func, flash_attn_func
85
+ try:
86
+ from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
87
+ apply_rotary_emb_func = __apply_rotary_emb_func
88
+ except ImportError:
89
+ logger.warn(
90
+ "Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
91
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
92
+ )
93
+
94
+ try:
95
+ from flash_attn.ops.rms_norm import rms_norm as __rms_norm
96
+ rms_norm = __rms_norm
97
+ except ImportError:
98
+ logger.warn(
99
+ "Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
100
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
101
+ )
102
+
103
+ try:
104
+ import flash_attn
105
+ _flash_attn_func = None
106
+ if not hasattr(flash_attn, '__version__'):
107
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
108
+ else:
109
+ if int(flash_attn.__version__.split(".")[0]) >= 2:
110
+ if int(flash_attn.__version__.split(".")[1]) >= 1:
111
+ from flash_attn.flash_attn_interface import flash_attn_func as _flash_attn_func
112
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
113
+ else:
114
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
115
+ flash_attn_unpadded_func = __flash_attn_unpadded_func
116
+ flash_attn_func = _flash_attn_func
117
+ except ImportError:
118
+ logger.warn(
119
+ "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
120
+ "https://github.com/Dao-AILab/flash-attention"
121
+ )
122
+
123
+ def quantize_cache_v(fdata, bits, qmax, qmin):
124
+ # b, s, head, h-dim->b, head, s, h-dim
125
+ qtype = torch.uint8
126
+ device = fdata.device
127
+ shape = fdata.shape
128
+
129
+ fdata_cal = torch.flatten(fdata, 2)
130
+ fmax = torch.amax(fdata_cal, dim=-1, keepdim=True)
131
+ fmin = torch.amin(fdata_cal, dim=-1, keepdim=True)
132
+ # Compute params
133
+ if qmax.device != fmax.device:
134
+ qmax = qmax.to(device)
135
+ qmin = qmin.to(device)
136
+ scale = (fmax - fmin) / (qmax - qmin)
137
+ zero = qmin - fmin / scale
138
+ scale = scale.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
139
+ zero = zero.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
140
+ # Quantize
141
+ res_data = fdata / scale + zero
142
+ qdata = torch.clamp(res_data, qmin, qmax).to(qtype)
143
+ return qdata.contiguous(), scale, zero
144
+
145
+ def dequantize_cache_torch(qdata, scale, zero):
146
+ data = scale * (qdata - zero)
147
+ return data
148
+
149
+ class FlashSelfAttention(torch.nn.Module):
150
+ def __init__(
151
+ self,
152
+ causal=False,
153
+ softmax_scale=None,
154
+ attention_dropout=0.0,
155
+ ):
156
+ super().__init__()
157
+ assert flash_attn_unpadded_func is not None, (
158
+ "Please install FlashAttention first, " "e.g., with pip install flash-attn"
159
+ )
160
+ assert (
161
+ rearrange is not None
162
+ ), "Please install einops first, e.g., with pip install einops"
163
+ self.causal = causal
164
+ self.softmax_scale = softmax_scale
165
+ self.dropout_p = attention_dropout
166
+
167
+ def unpad_input(self, hidden_states, attention_mask):
168
+ valid_mask = attention_mask.squeeze(1).squeeze(1).eq(0)
169
+ seqlens_in_batch = valid_mask.sum(dim=-1, dtype=torch.int32)
170
+ indices = torch.nonzero(valid_mask.flatten(), as_tuple=False).flatten()
171
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
172
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
173
+ hidden_states = hidden_states[indices]
174
+ return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
175
+
176
+ def pad_input(self, hidden_states, indices, batch, seqlen):
177
+ output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device,
178
+ dtype=hidden_states.dtype)
179
+ output[indices] = hidden_states
180
+ return rearrange(output, '(b s) ... -> b s ...', b=batch)
181
+
182
+ def forward(self, q, k, v, attention_mask=None):
183
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
184
+ assert all((i.is_cuda for i in (q, k, v)))
185
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
186
+ seqlen_k = k.shape[1]
187
+ seqlen_out = seqlen_q
188
+
189
+ if flash_attn_func is not None and batch_size == 1:
190
+ dropout_p = self.dropout_p if self.training else 0
191
+ output = flash_attn_func(q, k, v, dropout_p, softmax_scale=self.softmax_scale, causal=self.causal)
192
+ return output
193
+
194
+ q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
195
+ cu_seqlens_q = torch.arange(
196
+ 0,
197
+ (batch_size + 1) * seqlen_q,
198
+ step=seqlen_q,
199
+ dtype=torch.int32,
200
+ device=q.device,
201
+ )
202
+
203
+ if batch_size > 1 and attention_mask is not None:
204
+ k, indices_k, cu_seqlens_k, seqlen_k = self.unpad_input(k, attention_mask)
205
+ if q.size(0) == v.size(0):
206
+ q = q[indices_k]
207
+ cu_seqlens_q = cu_seqlens_k
208
+ seqlen_q = seqlen_k
209
+ v = v[indices_k]
210
+ else:
211
+ cu_seqlens_k = torch.arange(
212
+ 0,
213
+ (batch_size + 1) * seqlen_k,
214
+ step=seqlen_k,
215
+ dtype=torch.int32,
216
+ device=q.device,
217
+ )
218
+
219
+ if self.training:
220
+ assert seqlen_k == seqlen_q
221
+ is_causal = self.causal
222
+ dropout_p = self.dropout_p
223
+ else:
224
+ is_causal = seqlen_q == seqlen_k
225
+ dropout_p = 0
226
+
227
+ output = flash_attn_unpadded_func(
228
+ q,
229
+ k,
230
+ v,
231
+ cu_seqlens_q,
232
+ cu_seqlens_k,
233
+ seqlen_q,
234
+ seqlen_k,
235
+ dropout_p,
236
+ softmax_scale=self.softmax_scale,
237
+ causal=is_causal,
238
+ )
239
+ if batch_size > 1 and attention_mask is not None and seqlen_q == seqlen_k:
240
+ output = self.pad_input(output, indices_k, batch_size, seqlen_out)
241
+ else:
242
+ new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
243
+ output = output.view(new_shape)
244
+ return output
245
+
246
+
247
+ class QWenAttention(nn.Module):
248
+ def __init__(self, config):
249
+ super().__init__()
250
+
251
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
252
+ self.seq_length = config.seq_length
253
+
254
+ self.hidden_size = config.hidden_size
255
+ self.split_size = config.hidden_size
256
+ self.num_heads = config.num_attention_heads
257
+ self.head_dim = self.hidden_size // self.num_heads
258
+
259
+ self.use_flash_attn = config.use_flash_attn
260
+ self.scale_attn_weights = True
261
+
262
+ self.projection_size = config.kv_channels * config.num_attention_heads
263
+
264
+ assert self.projection_size % config.num_attention_heads == 0
265
+ self.hidden_size_per_attention_head = (
266
+ self.projection_size // config.num_attention_heads
267
+ )
268
+
269
+ self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
270
+
271
+ self.c_proj = nn.Linear(
272
+ config.hidden_size, self.projection_size, bias=not config.no_bias
273
+ )
274
+
275
+ self.is_fp32 = not (config.bf16 or config.fp16)
276
+ if (
277
+ self.use_flash_attn
278
+ and flash_attn_unpadded_func is not None
279
+ and not self.is_fp32
280
+ ):
281
+ self.core_attention_flash = FlashSelfAttention(
282
+ causal=True, attention_dropout=config.attn_dropout_prob
283
+ )
284
+ self.bf16 = config.bf16
285
+
286
+ self.use_dynamic_ntk = config.use_dynamic_ntk
287
+ self.use_logn_attn = config.use_logn_attn
288
+
289
+ logn_list = [
290
+ math.log(i, self.seq_length) if i > self.seq_length else 1
291
+ for i in range(1, 32768)
292
+ ]
293
+ logn_tensor = torch.tensor(logn_list)[None, :, None, None]
294
+ self.register_buffer("logn_tensor", logn_tensor, persistent=False)
295
+
296
+ self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
297
+ self.softmax_in_fp32 = config.softmax_in_fp32 if hasattr(config, 'softmax_in_fp32') else False
298
+ self.use_cache_quantization = config.use_cache_quantization if hasattr(config, 'use_cache_quantization') else False
299
+ self.use_cache_kernel = config.use_cache_kernel if hasattr(config,'use_cache_kernel') else False
300
+ cache_dtype = torch.float
301
+ if self.bf16:
302
+ cache_dtype=torch.bfloat16
303
+ elif config.fp16:
304
+ cache_dtype = torch.float16
305
+ self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
306
+ self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
307
+
308
+ if config.use_cache_quantization and config.use_cache_kernel:
309
+ # pre check if the support files existing
310
+ module_root = pathlib.Path(__file__).parent
311
+ src_files = ("cache_autogptq_cuda_256.cpp", "cache_autogptq_cuda_kernel_256.cu")
312
+ if any(not (module_root/src).is_file() for src in src_files):
313
+ warnings.warn("KV cache kernel source files (.cpp and .cu) not found.")
314
+ self.cache_kernels = None
315
+ else:
316
+ try:
317
+ from .cpp_kernels import cache_autogptq_cuda_256
318
+ self.cache_kernels = cache_autogptq_cuda_256
319
+ except ImportError:
320
+ warnings.warn("Failed to import KV cache kernels.")
321
+ self.cache_kernels = None
322
+
323
+ def _attn(self, query, key, value, causal_mask=None, attention_mask=None, head_mask=None):
324
+ device = query.device
325
+ if self.use_cache_quantization:
326
+ qk, qk_scale, qk_zero = key
327
+ if self.use_cache_kernel and self.cache_kernels is not None:
328
+ shape = query.shape[:-1] + (qk.shape[-2],)
329
+ attn_weights = torch.zeros(shape, dtype=torch.float16, device=device)
330
+ self.cache_kernels.vecquant8matmul_batched_faster_old(
331
+ query.contiguous() if query.dtype == torch.float16 else query.to(torch.float16).contiguous(),
332
+ qk.transpose(-1, -2).contiguous(),
333
+ attn_weights,
334
+ qk_scale.contiguous() if qk_scale.dtype == torch.float16 else qk_scale.to(torch.float16).contiguous(),
335
+ qk_zero.contiguous()if qk_zero.dtype == torch.float16 else qk_zero.to(torch.float16).contiguous())
336
+ # attn_weights = attn_weights.to(query.dtype).contiguous()
337
+ else:
338
+ key = dequantize_cache_torch(qk, qk_scale, qk_zero)
339
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
340
+ else:
341
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
342
+
343
+ if self.scale_attn_weights:
344
+ if self.use_cache_quantization:
345
+ size_temp = value[0].size(-1)
346
+ else:
347
+ size_temp = value.size(-1)
348
+ attn_weights = attn_weights / (size_temp ** 0.5)
349
+
350
+ mask_value = torch.finfo(attn_weights.dtype).min
351
+ if causal_mask is not None:
352
+ attn_weights = torch.where(
353
+ causal_mask, attn_weights.to(attn_weights.dtype), mask_value
354
+ )
355
+
356
+ if attention_mask is not None:
357
+ attn_weights = attn_weights + attention_mask
358
+
359
+ if self.softmax_in_fp32:
360
+ attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1)
361
+ else:
362
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
363
+
364
+ attn_weights = attn_weights.type(query.dtype)
365
+ attn_weights = self.attn_dropout(attn_weights)
366
+
367
+ if head_mask is not None:
368
+ attn_weights = attn_weights * head_mask
369
+
370
+ if self.use_cache_quantization:
371
+ qv, qv_scale, qv_zero = value
372
+ if self.use_cache_kernel and self.cache_kernels is not None:
373
+ shape = attn_weights.shape[:-1] + (query.shape[-1],)
374
+ attn_output = torch.zeros(shape, dtype=torch.float16, device=device)
375
+ self.cache_kernels.vecquant8matmul_batched_column_compression_faster_old(
376
+ attn_weights.contiguous() if attn_weights.dtype == torch.float16 else attn_weights.to(torch.float16).contiguous(),
377
+ qv.contiguous(), # dtype: int32
378
+ attn_output,
379
+ qv_scale.contiguous() if qv_scale.dtype == torch.float16 else qv_scale.to(torch.float16).contiguous(),
380
+ qv_zero.contiguous() if qv_zero.dtype == torch.float16 else qv_zero.to(torch.float16).contiguous())
381
+ if attn_output.dtype != query.dtype:
382
+ attn_output = attn_output.to(query.dtype)
383
+ attn_weights = attn_weights.to(query.dtype)
384
+ else:
385
+ value = dequantize_cache_torch(qv, qv_scale, qv_zero)
386
+ attn_output = torch.matmul(attn_weights, value)
387
+ else:
388
+ attn_output = torch.matmul(attn_weights, value)
389
+
390
+ attn_output = attn_output.transpose(1, 2)
391
+
392
+ return attn_output, attn_weights
393
+
394
+ def _split_heads(self, tensor, num_heads, attn_head_size):
395
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
396
+ tensor = tensor.view(new_shape)
397
+ return tensor
398
+
399
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
400
+ tensor = tensor.contiguous()
401
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
402
+ return tensor.view(new_shape)
403
+
404
+ def forward(
405
+ self,
406
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
407
+ rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
408
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
409
+ attention_mask: Optional[torch.FloatTensor] = None,
410
+ head_mask: Optional[torch.FloatTensor] = None,
411
+ encoder_hidden_states: Optional[torch.Tensor] = None,
412
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
413
+ output_attentions: Optional[bool] = False,
414
+ use_cache: Optional[bool] = False,
415
+ ):
416
+ mixed_x_layer = self.c_attn(hidden_states)
417
+
418
+ query, key, value = mixed_x_layer.split(self.split_size, dim=2)
419
+
420
+ query = self._split_heads(query, self.num_heads, self.head_dim)
421
+ key = self._split_heads(key, self.num_heads, self.head_dim)
422
+ value = self._split_heads(value, self.num_heads, self.head_dim)
423
+
424
+ if rotary_pos_emb_list is not None:
425
+ cur_len = query.shape[1]
426
+ if len(rotary_pos_emb_list) == 1:
427
+ rotary_pos_emb = rotary_pos_emb_list[0]
428
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
429
+ rotary_pos_emb = (rotary_pos_emb,) * 2
430
+ q_pos_emb, k_pos_emb = rotary_pos_emb
431
+ # Slice the pos emb for current inference
432
+ query = apply_rotary_pos_emb(query, q_pos_emb)
433
+ key = apply_rotary_pos_emb(key, k_pos_emb)
434
+ else:
435
+ query_list = []
436
+ key_list = []
437
+ for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
438
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
439
+ rotary_pos_emb = (rotary_pos_emb,) * 2
440
+ q_pos_emb, k_pos_emb = rotary_pos_emb
441
+ # Slice the pos emb for current inference
442
+ query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
443
+ key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
444
+ query = torch.cat(query_list, dim=0)
445
+ key = torch.cat(key_list, dim=0)
446
+
447
+ if self.use_cache_quantization:
448
+ key = quantize_cache_v(key.permute(0, 2, 1, 3),
449
+ bits=8,
450
+ qmin=self.cache_qmin,
451
+ qmax=self.cache_qmax)
452
+ value = quantize_cache_v(value.permute(0, 2, 1, 3),
453
+ bits=8,
454
+ qmin=self.cache_qmin,
455
+ qmax=self.cache_qmax)
456
+
457
+
458
+ if layer_past is not None:
459
+ past_key, past_value = layer_past[0], layer_past[1]
460
+ if self.use_cache_quantization:
461
+ # use_cache_quantization:
462
+ # present=((q_key,key_scale,key_zero_point),
463
+ # (q_value,value_scale,value_zero_point))
464
+ key = (torch.cat((past_key[0], key[0]), dim=2),
465
+ torch.cat((past_key[1], key[1]), dim=2),
466
+ torch.cat((past_key[2], key[2]), dim=2))
467
+ value = (torch.cat((past_value[0], value[0]), dim=2),
468
+ torch.cat((past_value[1], value[1]), dim=2),
469
+ torch.cat((past_value[2], value[2]), dim=2))
470
+ else:
471
+ # not use_cache_quantization:
472
+ # present=(key,value)
473
+ key = torch.cat((past_key, key), dim=1)
474
+ value = torch.cat((past_value, value), dim=1)
475
+
476
+ if use_cache:
477
+ present = (key, value)
478
+ else:
479
+ present = None
480
+
481
+ key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
482
+ if key_size > self.seq_length and self.use_logn_attn and not self.training:
483
+ if self.use_cache_quantization:
484
+ seq_start = key[0].size(2) - query.size(1)
485
+ seq_end = key[0].size(2)
486
+ else:
487
+ seq_start = key.size(1) - query.size(1)
488
+ seq_end = key.size(1)
489
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
490
+ query = query * logn_tensor.expand_as(query)
491
+
492
+ if (
493
+ self.use_flash_attn
494
+ and flash_attn_unpadded_func is not None
495
+ and not self.is_fp32
496
+ and query.is_cuda
497
+ ):
498
+ q, k, v = query, key, value
499
+ attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
500
+ else:
501
+ key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
502
+ if query.size(1) == key_size:
503
+ causal_mask = torch.tril(
504
+ torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)
505
+ ).view(1, 1, key_size, key_size)
506
+ else:
507
+ causal_mask = None
508
+ query = query.permute(0, 2, 1, 3)
509
+ if not self.use_cache_quantization:
510
+ key = key.permute(0, 2, 1, 3)
511
+ value = value.permute(0, 2, 1, 3)
512
+ if (
513
+ causal_mask is None
514
+ and self.use_flash_attn
515
+ and flash_attn_unpadded_func is not None
516
+ and not self.is_fp32
517
+ and not query.is_cuda
518
+ ):
519
+ raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
520
+
521
+ if not self.use_cache_quantization and SUPPORT_TORCH2:
522
+ if attention_mask is not None:
523
+ attention_mask = attention_mask.expand(
524
+ -1, -1, causal_mask.size(2), -1
525
+ )
526
+ if causal_mask is not None:
527
+ attention_mask.masked_fill(~causal_mask, torch.finfo(query.dtype).min)
528
+ else:
529
+ attention_mask = causal_mask
530
+ attn_output = F.scaled_dot_product_attention(
531
+ query, key, value, attn_mask=attention_mask
532
+ ).transpose(1, 2)
533
+ attn_weight = None
534
+ else:
535
+ attn_output, attn_weight = self._attn(
536
+ query, key, value, causal_mask, attention_mask, head_mask
537
+ )
538
+ context_layer = self._merge_heads(
539
+ attn_output, self.num_heads, self.head_dim
540
+ )
541
+
542
+ attn_output = self.c_proj(context_layer)
543
+
544
+ outputs = (attn_output, present)
545
+ if output_attentions:
546
+ if (
547
+ self.use_flash_attn
548
+ and flash_attn_unpadded_func is not None
549
+ and not self.is_fp32
550
+ ):
551
+ raise ValueError("Cannot output attentions while using flash-attn")
552
+ elif not self.use_cache_quantization and SUPPORT_TORCH2:
553
+ raise ValueError("Cannot output attentions while using scaled_dot_product_attention")
554
+ else:
555
+ outputs += (attn_weight,)
556
+
557
+ return outputs
558
+
559
+
560
+ class QWenMLP(nn.Module):
561
+ def __init__(self, config):
562
+ super().__init__()
563
+ self.w1 = nn.Linear(
564
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
565
+ )
566
+ self.w2 = nn.Linear(
567
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
568
+ )
569
+ ff_dim_in = config.intermediate_size // 2
570
+ self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
571
+
572
+ def forward(self, hidden_states):
573
+ a1 = self.w1(hidden_states)
574
+ a2 = self.w2(hidden_states)
575
+ intermediate_parallel = a1 * F.silu(a2)
576
+ output = self.c_proj(intermediate_parallel)
577
+ return output
578
+
579
+
580
+ class QWenBlock(nn.Module):
581
+ def __init__(self, config):
582
+ super().__init__()
583
+ hidden_size = config.hidden_size
584
+ self.bf16 = config.bf16
585
+
586
+ self.ln_1 = RMSNorm(
587
+ hidden_size,
588
+ eps=config.layer_norm_epsilon,
589
+ )
590
+ self.attn = QWenAttention(config)
591
+ self.ln_2 = RMSNorm(
592
+ hidden_size,
593
+ eps=config.layer_norm_epsilon,
594
+ )
595
+
596
+ self.mlp = QWenMLP(config)
597
+
598
+ def forward(
599
+ self,
600
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
601
+ rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
602
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
603
+ attention_mask: Optional[torch.FloatTensor] = None,
604
+ head_mask: Optional[torch.FloatTensor] = None,
605
+ encoder_hidden_states: Optional[torch.Tensor] = None,
606
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
607
+ use_cache: Optional[bool] = False,
608
+ output_attentions: Optional[bool] = False,
609
+ ):
610
+ layernorm_output = self.ln_1(hidden_states)
611
+
612
+ attn_outputs = self.attn(
613
+ layernorm_output,
614
+ rotary_pos_emb_list,
615
+ layer_past=layer_past,
616
+ attention_mask=attention_mask,
617
+ head_mask=head_mask,
618
+ use_cache=use_cache,
619
+ output_attentions=output_attentions,
620
+ )
621
+ attn_output = attn_outputs[0]
622
+
623
+ outputs = attn_outputs[1:]
624
+
625
+ residual = hidden_states
626
+ layernorm_input = attn_output + residual
627
+
628
+ layernorm_output = self.ln_2(layernorm_input)
629
+
630
+ residual = layernorm_input
631
+ mlp_output = self.mlp(layernorm_output)
632
+ hidden_states = residual + mlp_output
633
+
634
+ if use_cache:
635
+ outputs = (hidden_states,) + outputs
636
+ else:
637
+ outputs = (hidden_states,) + outputs[1:]
638
+
639
+ return outputs
640
+
641
+
642
+ class QWenPreTrainedModel(PreTrainedModel):
643
+ config_class = QWenConfig
644
+ base_model_prefix = "transformer"
645
+ is_parallelizable = False
646
+ supports_gradient_checkpointing = True
647
+ _no_split_modules = ["QWenBlock"]
648
+ _skip_keys_device_placement = "past_key_values"
649
+
650
+ def __init__(self, *inputs, **kwargs):
651
+ super().__init__(*inputs, **kwargs)
652
+
653
+ def _init_weights(self, module):
654
+ """Initialize the weights."""
655
+ if isinstance(module, nn.Linear):
656
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
657
+ if module.bias is not None:
658
+ module.bias.data.zero_()
659
+ elif isinstance(module, nn.Embedding):
660
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
661
+ if module.padding_idx is not None:
662
+ module.weight.data[module.padding_idx].zero_()
663
+ elif isinstance(module, RMSNorm):
664
+ module.weight.data.fill_(1.0)
665
+
666
+ for name, p in module.named_parameters():
667
+ if name == "c_proj.weight":
668
+ p.data.normal_(
669
+ mean=0.0,
670
+ std=(
671
+ self.config.initializer_range
672
+ / math.sqrt(2 * self.config.num_hidden_layers)
673
+ ),
674
+ )
675
+ def _set_gradient_checkpointing(self, enable: bool = False, gradient_checkpointing_func: Callable = None):
676
+ is_gradient_checkpointing_set = False
677
+
678
+ if isinstance(self, QWenModel):
679
+ self.gradient_checkpointing = enable
680
+ self._gradient_checkpointing_func = gradient_checkpointing_func
681
+ is_gradient_checkpointing_set = True
682
+
683
+ for module in self.modules():
684
+ if isinstance(module, QWenModel):
685
+ module.gradient_checkpointing = enable
686
+ module._gradient_checkpointing_func = gradient_checkpointing_func
687
+ is_gradient_checkpointing_set = True
688
+
689
+ if not is_gradient_checkpointing_set:
690
+ raise ValueError(f"{self.__class__.__name__} is not compatible with gradient checkpointing. Make sure all the architecture support it by setting a boolean attribute 'gradient_checkpointing' to modules of the model that uses checkpointing.")
691
+
692
+
693
+
694
+ class QWenModel(QWenPreTrainedModel):
695
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
696
+
697
+ def __init__(self, config):
698
+ super().__init__(config)
699
+ self.vocab_size = config.vocab_size
700
+ self.num_hidden_layers = config.num_hidden_layers
701
+ self.embed_dim = config.hidden_size
702
+ self.use_cache_quantization = self.config.use_cache_quantization if hasattr(self.config, 'use_cache_quantization') else False
703
+
704
+ self.gradient_checkpointing = False
705
+ self.use_dynamic_ntk = config.use_dynamic_ntk
706
+ self.seq_length = config.seq_length
707
+
708
+ self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
709
+
710
+ self.drop = nn.Dropout(config.emb_dropout_prob)
711
+
712
+ if config.rotary_pct == 1.0:
713
+ self.rotary_ndims = None
714
+ else:
715
+ assert config.rotary_pct < 1
716
+ self.rotary_ndims = int(
717
+ config.kv_channels * config.rotary_pct
718
+ )
719
+ dim = (
720
+ self.rotary_ndims
721
+ if self.rotary_ndims is not None
722
+ else config.kv_channels
723
+ )
724
+ self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
725
+
726
+ self.use_flash_attn = config.use_flash_attn
727
+ self.is_fp32 = not (config.bf16 or config.fp16)
728
+
729
+ self.h = nn.ModuleList(
730
+ [
731
+ QWenBlock(
732
+ config
733
+ )
734
+ for i in range(config.num_hidden_layers)
735
+ ]
736
+ )
737
+ self.ln_f = RMSNorm(
738
+ self.embed_dim,
739
+ eps=config.layer_norm_epsilon,
740
+ )
741
+
742
+ self.post_init()
743
+
744
+ def get_input_embeddings(self):
745
+ return self.wte
746
+
747
+ def set_input_embeddings(self, new_embeddings):
748
+ self.wte = new_embeddings
749
+
750
+ def get_ntk_alpha(self, true_seq_len):
751
+ context_value = math.log(true_seq_len / self.seq_length, 2) + 1
752
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
753
+ ntk_alpha = max(ntk_alpha, 1)
754
+ return ntk_alpha
755
+
756
+ def forward(
757
+ self,
758
+ input_ids: Optional[torch.LongTensor] = None,
759
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
760
+ attention_mask: Optional[torch.FloatTensor] = None,
761
+ token_type_ids: Optional[torch.LongTensor] = None,
762
+ position_ids: Optional[torch.LongTensor] = None,
763
+ head_mask: Optional[torch.FloatTensor] = None,
764
+ inputs_embeds: Optional[torch.FloatTensor] = None,
765
+ encoder_hidden_states: Optional[torch.Tensor] = None,
766
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
767
+ use_cache: Optional[bool] = None,
768
+ output_attentions: Optional[bool] = None,
769
+ output_hidden_states: Optional[bool] = None,
770
+ return_dict: Optional[bool] = None,
771
+ ):
772
+ output_attentions = (
773
+ output_attentions
774
+ if output_attentions is not None
775
+ else self.config.output_attentions
776
+ )
777
+ output_hidden_states = (
778
+ output_hidden_states
779
+ if output_hidden_states is not None
780
+ else self.config.output_hidden_states
781
+ )
782
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
783
+ return_dict = (
784
+ return_dict if return_dict is not None else self.config.use_return_dict
785
+ )
786
+
787
+ if input_ids is not None and inputs_embeds is not None:
788
+ raise ValueError(
789
+ "You cannot specify both input_ids and inputs_embeds at the same time"
790
+ )
791
+ elif input_ids is not None:
792
+ input_shape = input_ids.size()
793
+ input_ids = input_ids.view(-1, input_shape[-1])
794
+ batch_size = input_ids.shape[0]
795
+ elif inputs_embeds is not None:
796
+ input_shape = inputs_embeds.size()[:-1]
797
+ batch_size = inputs_embeds.shape[0]
798
+ else:
799
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
800
+
801
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
802
+
803
+ if token_type_ids is not None:
804
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
805
+ if position_ids is not None:
806
+ position_ids = position_ids.view(-1, input_shape[-1])
807
+
808
+ if past_key_values is None:
809
+ past_length = 0
810
+ past_key_values = tuple([None] * len(self.h))
811
+ else:
812
+ if self.use_cache_quantization:
813
+ past_length = past_key_values[0][0][0].size(2)
814
+ else:
815
+ past_length = past_key_values[0][0].size(-2)
816
+ if position_ids is None:
817
+ position_ids = torch.arange(
818
+ past_length,
819
+ input_shape[-1] + past_length,
820
+ dtype=torch.long,
821
+ device=device,
822
+ )
823
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
824
+
825
+ if attention_mask is not None:
826
+ if batch_size <= 0:
827
+ raise ValueError("batch_size has to be defined and > 0")
828
+ attention_mask = attention_mask.view(batch_size, -1)
829
+ attention_mask = attention_mask[:, None, None, :]
830
+ attention_mask = attention_mask.to(dtype=self.dtype)
831
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
832
+
833
+ encoder_attention_mask = None
834
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
835
+
836
+ if inputs_embeds is None:
837
+ inputs_embeds = self.wte(input_ids)
838
+ hidden_states = inputs_embeds
839
+
840
+ kv_seq_len = hidden_states.size()[1]
841
+ if past_key_values[0] is not None:
842
+ # past key values[0][0] shape: bs * seq_len * head_num * dim
843
+ if self.use_cache_quantization:
844
+ kv_seq_len += past_key_values[0][0][0].shape[2]
845
+ else:
846
+ kv_seq_len += past_key_values[0][0].shape[1]
847
+
848
+ if self.training or not self.use_dynamic_ntk:
849
+ ntk_alpha_list = [1.0]
850
+ elif kv_seq_len != hidden_states.size()[1]:
851
+ ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
852
+ else:
853
+ ntk_alpha_list = []
854
+ if attention_mask is not None and kv_seq_len > self.seq_length:
855
+ true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32)
856
+ for i in range(hidden_states.size()[0]):
857
+ true_seq_len = true_seq_lens[i].item()
858
+ ntk_alpha = self.get_ntk_alpha(true_seq_len)
859
+ ntk_alpha_list.append(ntk_alpha)
860
+ else:
861
+ ntk_alpha = self.get_ntk_alpha(kv_seq_len)
862
+ ntk_alpha_list.append(ntk_alpha)
863
+ self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
864
+ rotary_pos_emb_list = [
865
+ self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list
866
+ ]
867
+
868
+ hidden_states = self.drop(hidden_states)
869
+ output_shape = input_shape + (hidden_states.size(-1),)
870
+
871
+ if self.gradient_checkpointing and self.training:
872
+ if use_cache:
873
+ logger.warning_once(
874
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
875
+ )
876
+ use_cache = False
877
+
878
+ presents = () if use_cache else None
879
+ all_self_attentions = () if output_attentions else None
880
+ all_hidden_states = () if output_hidden_states else None
881
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
882
+
883
+ if output_hidden_states:
884
+ all_hidden_states = all_hidden_states + (hidden_states,)
885
+
886
+ if self.gradient_checkpointing and self.training:
887
+
888
+ def create_custom_forward(module):
889
+ def custom_forward(*inputs):
890
+ # None for past_key_value
891
+ return module(*inputs, use_cache, output_attentions)
892
+
893
+ return custom_forward
894
+
895
+ outputs = torch.utils.checkpoint.checkpoint(
896
+ create_custom_forward(block),
897
+ hidden_states,
898
+ rotary_pos_emb_list,
899
+ None,
900
+ attention_mask,
901
+ head_mask[i],
902
+ encoder_hidden_states,
903
+ encoder_attention_mask,
904
+ )
905
+ else:
906
+ outputs = block(
907
+ hidden_states,
908
+ layer_past=layer_past,
909
+ rotary_pos_emb_list=rotary_pos_emb_list,
910
+ attention_mask=attention_mask,
911
+ head_mask=head_mask[i],
912
+ encoder_hidden_states=encoder_hidden_states,
913
+ encoder_attention_mask=encoder_attention_mask,
914
+ use_cache=use_cache,
915
+ output_attentions=output_attentions,
916
+ )
917
+
918
+ hidden_states = outputs[0]
919
+ if use_cache is True:
920
+ presents = presents + (outputs[1],)
921
+
922
+ if output_attentions:
923
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
924
+
925
+ hidden_states = self.ln_f(hidden_states)
926
+ hidden_states = hidden_states.view(output_shape)
927
+ # Add last hidden state
928
+ if output_hidden_states:
929
+ all_hidden_states = all_hidden_states + (hidden_states,)
930
+
931
+ if not return_dict:
932
+ return tuple(
933
+ v for v in [hidden_states, presents, all_hidden_states] if v is not None
934
+ )
935
+
936
+ return BaseModelOutputWithPast(
937
+ last_hidden_state=hidden_states,
938
+ past_key_values=presents,
939
+ hidden_states=all_hidden_states,
940
+ attentions=all_self_attentions,
941
+ )
942
+
943
+
944
+ class QWenLMHeadModel(QWenPreTrainedModel):
945
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
946
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
947
+
948
+ def __init__(self, config):
949
+ super().__init__(config)
950
+ assert (
951
+ config.bf16 + config.fp16 + config.fp32 <= 1
952
+ ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
953
+
954
+ autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
955
+
956
+ if autoset_precision:
957
+ if SUPPORT_BF16:
958
+ logger.warn(
959
+ "The model is automatically converting to bf16 for faster inference. "
960
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
961
+ )
962
+ config.bf16 = True
963
+ elif SUPPORT_FP16:
964
+ logger.warn(
965
+ "The model is automatically converting to fp16 for faster inference. "
966
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
967
+ )
968
+ config.fp16 = True
969
+ else:
970
+ config.fp32 = True
971
+
972
+ if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
973
+ logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
974
+ if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
975
+ logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
976
+ if config.fp32:
977
+ if SUPPORT_BF16:
978
+ logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
979
+ elif SUPPORT_FP16:
980
+ logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
981
+
982
+ if config.use_flash_attn == "auto":
983
+ if config.bf16 or config.fp16:
984
+ logger.warn("Try importing flash-attention for faster inference...")
985
+ config.use_flash_attn = True
986
+ else:
987
+ config.use_flash_attn = False
988
+ if config.use_flash_attn and config.fp32:
989
+ logger.warn("Flash attention will be disabled because it does NOT support fp32.")
990
+
991
+ if config.use_flash_attn:
992
+ _import_flash_attn()
993
+
994
+ self.transformer = QWenModel(config)
995
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
996
+
997
+ if config.bf16:
998
+ self.transformer.bfloat16()
999
+ self.lm_head.bfloat16()
1000
+ if config.fp16:
1001
+ self.transformer.half()
1002
+ self.lm_head.half()
1003
+ self.post_init()
1004
+
1005
+ def get_output_embeddings(self):
1006
+ return self.lm_head
1007
+
1008
+ def set_output_embeddings(self, new_embeddings):
1009
+ self.lm_head = new_embeddings
1010
+
1011
+ def prepare_inputs_for_generation(
1012
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
1013
+ ):
1014
+ if past_key_values:
1015
+ input_ids = input_ids[:, -1].unsqueeze(-1)
1016
+
1017
+ if input_ids.size(0) == 1:
1018
+ attention_mask = None
1019
+ else:
1020
+ attention_mask = kwargs.get("attention_mask", None)
1021
+
1022
+ if inputs_embeds is not None and past_key_values is None:
1023
+ model_inputs = {"inputs_embeds": inputs_embeds}
1024
+ else:
1025
+ model_inputs = {"input_ids": input_ids}
1026
+
1027
+ model_inputs.update(
1028
+ {
1029
+ "past_key_values": past_key_values,
1030
+ "use_cache": kwargs.get("use_cache"),
1031
+ "attention_mask": attention_mask,
1032
+ }
1033
+ )
1034
+ return model_inputs
1035
+
1036
+ def forward(
1037
+ self,
1038
+ input_ids: Optional[torch.LongTensor] = None,
1039
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1040
+ attention_mask: Optional[torch.FloatTensor] = None,
1041
+ token_type_ids: Optional[torch.LongTensor] = None,
1042
+ position_ids: Optional[torch.LongTensor] = None,
1043
+ head_mask: Optional[torch.FloatTensor] = None,
1044
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1045
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1046
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1047
+ labels: Optional[torch.LongTensor] = None,
1048
+ use_cache: Optional[bool] = None,
1049
+ output_attentions: Optional[bool] = None,
1050
+ output_hidden_states: Optional[bool] = None,
1051
+ return_dict: Optional[bool] = None,
1052
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1053
+
1054
+ return_dict = (
1055
+ return_dict if return_dict is not None else self.config.use_return_dict
1056
+ )
1057
+
1058
+ transformer_outputs = self.transformer(
1059
+ input_ids,
1060
+ past_key_values=past_key_values,
1061
+ attention_mask=attention_mask,
1062
+ token_type_ids=token_type_ids,
1063
+ position_ids=position_ids,
1064
+ head_mask=head_mask,
1065
+ inputs_embeds=inputs_embeds,
1066
+ encoder_hidden_states=encoder_hidden_states,
1067
+ encoder_attention_mask=encoder_attention_mask,
1068
+ use_cache=use_cache,
1069
+ output_attentions=output_attentions,
1070
+ output_hidden_states=output_hidden_states,
1071
+ return_dict=return_dict,
1072
+ )
1073
+ hidden_states = transformer_outputs[0]
1074
+
1075
+ lm_logits = self.lm_head(hidden_states)
1076
+
1077
+ loss = None
1078
+ if labels is not None:
1079
+ labels = labels.to(lm_logits.device)
1080
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1081
+ shift_labels = labels[..., 1:].contiguous()
1082
+ loss_fct = CrossEntropyLoss()
1083
+ loss = loss_fct(
1084
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
1085
+ )
1086
+
1087
+ if not return_dict:
1088
+ output = (lm_logits,) + transformer_outputs[1:]
1089
+ return ((loss,) + output) if loss is not None else output
1090
+
1091
+ return CausalLMOutputWithPast(
1092
+ loss=loss,
1093
+ logits=lm_logits,
1094
+ past_key_values=transformer_outputs.past_key_values,
1095
+ hidden_states=transformer_outputs.hidden_states,
1096
+ attentions=transformer_outputs.attentions,
1097
+ )
1098
+
1099
+ @staticmethod
1100
+ def _reorder_cache(
1101
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1102
+ ) -> Tuple[Tuple[torch.Tensor]]:
1103
+
1104
+ return tuple(
1105
+ tuple(
1106
+ past_state.index_select(0, beam_idx.to(past_state.device))
1107
+ for past_state in layer_past
1108
+ )
1109
+ for layer_past in past_key_values
1110
+ )
1111
+
1112
+ def chat(
1113
+ self,
1114
+ tokenizer: PreTrainedTokenizer,
1115
+ query: str,
1116
+ history: Optional[HistoryType],
1117
+ system: str = "You are a helpful assistant.",
1118
+ stream: Optional[bool] = _SENTINEL,
1119
+ stop_words_ids: Optional[List[List[int]]] = None,
1120
+ generation_config: Optional[GenerationConfig] = None,
1121
+ **kwargs,
1122
+ ) -> Tuple[str, HistoryType]:
1123
+ generation_config = generation_config if generation_config is not None else self.generation_config
1124
+
1125
+ assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
1126
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1127
+ if history is None:
1128
+ history = []
1129
+ else:
1130
+ # make a copy of the user's input such that is is left untouched
1131
+ history = copy.deepcopy(history)
1132
+
1133
+ if stop_words_ids is None:
1134
+ stop_words_ids = []
1135
+
1136
+ max_window_size = kwargs.get('max_window_size', None)
1137
+ if max_window_size is None:
1138
+ max_window_size = generation_config.max_window_size
1139
+ raw_text, context_tokens = make_context(
1140
+ tokenizer,
1141
+ query,
1142
+ history=history,
1143
+ system=system,
1144
+ max_window_size=max_window_size,
1145
+ chat_format=generation_config.chat_format,
1146
+ )
1147
+
1148
+ stop_words_ids.extend(get_stop_words_ids(
1149
+ generation_config.chat_format, tokenizer
1150
+ ))
1151
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1152
+ outputs = self.generate(
1153
+ input_ids,
1154
+ stop_words_ids=stop_words_ids,
1155
+ return_dict_in_generate=False,
1156
+ generation_config=generation_config,
1157
+ **kwargs,
1158
+ )
1159
+
1160
+ response = decode_tokens(
1161
+ outputs[0],
1162
+ tokenizer,
1163
+ raw_text_len=len(raw_text),
1164
+ context_length=len(context_tokens),
1165
+ chat_format=generation_config.chat_format,
1166
+ verbose=False,
1167
+ errors='replace'
1168
+ )
1169
+
1170
+ # as history is a copy of the user inputs,
1171
+ # we can always return the new turn to the user.
1172
+ # separating input history and output history also enables the user
1173
+ # to implement more complex history management
1174
+ history.append((query, response))
1175
+
1176
+ return response, history
1177
+
1178
+ def chat_stream(
1179
+ self,
1180
+ tokenizer: PreTrainedTokenizer,
1181
+ query: str,
1182
+ history: Optional[HistoryType],
1183
+ system: str = "You are a helpful assistant.",
1184
+ stop_words_ids: Optional[List[List[int]]] = None,
1185
+ logits_processor: Optional[LogitsProcessorList] = None,
1186
+ generation_config: Optional[GenerationConfig] = None,
1187
+ **kwargs,
1188
+ ) -> Generator[str, Any, None]:
1189
+ generation_config = generation_config if generation_config is not None else self.generation_config
1190
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1191
+ if history is None:
1192
+ history = []
1193
+ if stop_words_ids is None:
1194
+ stop_words_ids = []
1195
+
1196
+ max_window_size = kwargs.get('max_window_size', None)
1197
+ if max_window_size is None:
1198
+ max_window_size = generation_config.max_window_size
1199
+ raw_text, context_tokens = make_context(
1200
+ tokenizer,
1201
+ query,
1202
+ history=history,
1203
+ system=system,
1204
+ max_window_size=max_window_size,
1205
+ chat_format=generation_config.chat_format,
1206
+ )
1207
+
1208
+ stop_words_ids.extend(get_stop_words_ids(
1209
+ generation_config.chat_format, tokenizer
1210
+ ))
1211
+ if stop_words_ids is not None:
1212
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1213
+ stop_words_ids=stop_words_ids,
1214
+ eos_token_id=generation_config.eos_token_id,
1215
+ )
1216
+ if logits_processor is None:
1217
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1218
+ else:
1219
+ logits_processor.append(stop_words_logits_processor)
1220
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1221
+
1222
+ from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
1223
+ self.__class__.generate_stream = NewGenerationMixin.generate
1224
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
1225
+ stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
1226
+
1227
+ def stream_generator():
1228
+ outputs = []
1229
+ for token in self.generate_stream(
1230
+ input_ids,
1231
+ return_dict_in_generate=False,
1232
+ generation_config=stream_config,
1233
+ logits_processor=logits_processor,
1234
+ seed=-1,
1235
+ **kwargs):
1236
+ outputs.append(token.item())
1237
+ yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
1238
+
1239
+ return stream_generator()
1240
+
1241
+ def generate(
1242
+ self,
1243
+ inputs: Optional[torch.Tensor] = None,
1244
+ generation_config: Optional[GenerationConfig] = None,
1245
+ logits_processor: Optional[LogitsProcessorList] = None,
1246
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1247
+ prefix_allowed_tokens_fn: Optional[
1248
+ Callable[[int, torch.Tensor], List[int]]
1249
+ ] = None,
1250
+ synced_gpus: Optional[bool] = None,
1251
+ assistant_model: Optional["PreTrainedModel"] = None,
1252
+ streamer: Optional["BaseStreamer"] = None,
1253
+ **kwargs,
1254
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1255
+ generation_config = generation_config if generation_config is not None else self.generation_config
1256
+
1257
+ # Process stop_words_ids.
1258
+ stop_words_ids = kwargs.pop("stop_words_ids", None)
1259
+ if stop_words_ids is None and generation_config is not None:
1260
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1261
+ if stop_words_ids is None:
1262
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1263
+
1264
+ if stop_words_ids is not None:
1265
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1266
+ stop_words_ids=stop_words_ids,
1267
+ eos_token_id=generation_config.eos_token_id,
1268
+ )
1269
+ if logits_processor is None:
1270
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1271
+ else:
1272
+ logits_processor.append(stop_words_logits_processor)
1273
+
1274
+ return super().generate(
1275
+ inputs,
1276
+ generation_config=generation_config,
1277
+ logits_processor=logits_processor,
1278
+ stopping_criteria=stopping_criteria,
1279
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1280
+ synced_gpus=synced_gpus,
1281
+ assistant_model=assistant_model,
1282
+ streamer=streamer,
1283
+ **kwargs,
1284
+ )
1285
+
1286
+
1287
+ class RotaryEmbedding(torch.nn.Module):
1288
+ def __init__(self, dim, base=10000):
1289
+ super().__init__()
1290
+ self.dim = dim
1291
+ self.base = base
1292
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1293
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
1294
+ if importlib.util.find_spec("einops") is None:
1295
+ raise RuntimeError("einops is required for Rotary Embedding")
1296
+
1297
+ self._rotary_pos_emb_cache = None
1298
+ self._seq_len_cached = 0
1299
+ self._ntk_alpha_cached = 1.0
1300
+ self._ntk_alpha_cached_list = [1.0]
1301
+
1302
+ def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
1303
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1304
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1305
+ self.inv_freq = 1.0 / (
1306
+ base
1307
+ ** (
1308
+ torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
1309
+ / self.dim
1310
+ )
1311
+ )
1312
+ self._seq_len_cached = max(2 * seqlen, 16)
1313
+ self._ntk_alpha_cached = ntk_alpha
1314
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1315
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1316
+
1317
+ emb = torch.cat((freqs, freqs), dim=-1)
1318
+ from einops import rearrange
1319
+
1320
+ emb = rearrange(emb, "n d -> 1 n 1 d")
1321
+
1322
+ cos, sin = emb.cos(), emb.sin()
1323
+ self._rotary_pos_emb_cache = [cos, sin]
1324
+
1325
+ def forward(self, max_seq_len, ntk_alpha=1.0):
1326
+ self.update_rotary_pos_emb_cache(max_seq_len, ntk_alpha)
1327
+ cos, sin = self._rotary_pos_emb_cache
1328
+ return [cos[:, :max_seq_len], sin[:, :max_seq_len]]
1329
+
1330
+
1331
+ def _rotate_half(x):
1332
+ from einops import rearrange
1333
+
1334
+ x = rearrange(x, "... (j d) -> ... j d", j=2)
1335
+ x1, x2 = x.unbind(dim=-2)
1336
+ return torch.cat((-x2, x1), dim=-1)
1337
+
1338
+
1339
+ def apply_rotary_pos_emb(t, freqs):
1340
+ """ Apply rotary embedding to the first rotary_dim of the iput
1341
+
1342
+ Arguments:
1343
+ t (tensor(batch_size, seq_len, n_head, head_dim)):
1344
+ the input embedding/hidden states
1345
+ freqs (list[tensor(1, seq_len, 1, rotary_dim), tensor(1, seq_len, 1, rotary_dim)]):
1346
+ the cached cos/sin position embeddings
1347
+ """
1348
+ rot_dim = freqs[0].shape[-1]
1349
+ cos, sin = freqs
1350
+ t_float = t.float()
1351
+ if apply_rotary_emb_func is not None and t.is_cuda:
1352
+ # apply_rotary_emb in flash_attn requires cos/sin to be of
1353
+ # shape (seqlen, rotary_dim / 2) and apply rotary embedding
1354
+ # to the first rotary_dim of the input
1355
+ cos = cos.squeeze(0).squeeze(1)[:, : rot_dim // 2]
1356
+ sin = sin.squeeze(0).squeeze(1)[:, : rot_dim // 2]
1357
+ return apply_rotary_emb_func(t_float, cos, sin).type_as(t)
1358
+ else:
1359
+ t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
1360
+ t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
1361
+ return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
1362
+
1363
+
1364
+ class RMSNorm(torch.nn.Module):
1365
+ def __init__(self, dim: int, eps: float = 1e-6):
1366
+ super().__init__()
1367
+ self.eps = eps
1368
+ self.weight = nn.Parameter(torch.ones(dim))
1369
+
1370
+ def _norm(self, x):
1371
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
1372
+
1373
+ def forward(self, x):
1374
+ if rms_norm is not None and x.is_cuda:
1375
+ return rms_norm(x, self.weight, self.eps)
1376
+ else:
1377
+ output = self._norm(x.float()).type_as(x)
1378
+ return output * self.weight
qwen.tiktoken ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2b1b8dfb5cc5f024bafc373121c6aba3f66f9a5a0269e243470a1de16a33186
3
+ size 2561218
qwen_generation_utils.py ADDED
@@ -0,0 +1,416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Generation support."""
7
+
8
+ from typing import Tuple, List, Union, Iterable
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from transformers import PreTrainedTokenizer
14
+ from transformers import logging
15
+ from transformers.generation import LogitsProcessor
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+ # Types.
20
+ HistoryType = List[Tuple[str, str]]
21
+ TokensType = List[int]
22
+ BatchTokensType = List[List[int]]
23
+
24
+
25
+ def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
26
+ for tokens in batch:
27
+ context_length = len(tokens)
28
+ if context_length < seq_length:
29
+ tokens.extend([pad_id] * (seq_length - context_length))
30
+ return batch
31
+
32
+
33
+ def get_ltor_masks_and_position_ids(
34
+ data,
35
+ eod_token,
36
+ reset_position_ids,
37
+ reset_attention_mask,
38
+ eod_mask_loss,
39
+ ):
40
+ """Build masks and position id for left to right model."""
41
+
42
+ # Extract batch size and sequence length.
43
+ micro_batch_size, seq_length = data.size()
44
+
45
+ # Attention mask (lower triangular).
46
+ if reset_attention_mask:
47
+ att_mask_batch = micro_batch_size
48
+ else:
49
+ att_mask_batch = 1
50
+ attention_mask = torch.tril(
51
+ torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
52
+ ).view(att_mask_batch, 1, seq_length, seq_length)
53
+
54
+ # Loss mask.
55
+ loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
56
+ if eod_mask_loss:
57
+ loss_mask[data == eod_token] = 0.0
58
+
59
+ # Position ids.
60
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
61
+ position_ids = position_ids.unsqueeze(0).expand_as(data)
62
+ # We need to clone as the ids will be modifed based on batch index.
63
+ if reset_position_ids:
64
+ position_ids = position_ids.clone()
65
+
66
+ if reset_position_ids or reset_attention_mask:
67
+ # Loop through the batches:
68
+ for b in range(micro_batch_size):
69
+
70
+ # Find indecies where EOD token is.
71
+ eod_index = position_ids[b, data[b] == eod_token]
72
+ # Detach indecies from positions if going to modify positions.
73
+ if reset_position_ids:
74
+ eod_index = eod_index.clone()
75
+
76
+ # Loop through EOD indecies:
77
+ prev_index = 0
78
+ for j in range(eod_index.size()[0]):
79
+ i = eod_index[j]
80
+ # Mask attention loss.
81
+ if reset_attention_mask:
82
+ attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
83
+ # Reset positions.
84
+ if reset_position_ids:
85
+ position_ids[b, (i + 1) :] -= i + 1 - prev_index
86
+ prev_index = i + 1
87
+
88
+ # Convert attention mask to binary:
89
+ attention_mask = attention_mask < 0.5
90
+
91
+ return attention_mask, loss_mask, position_ids
92
+
93
+
94
+ def get_batch(context_tokens: torch.LongTensor, eod_id: int):
95
+ """Generate batch from context tokens."""
96
+ # Move to GPU.
97
+ tokens = context_tokens.contiguous().to(context_tokens.device)
98
+ # Get the attention mask and postition ids.
99
+ attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
100
+ tokens,
101
+ eod_id,
102
+ reset_position_ids=False,
103
+ reset_attention_mask=False,
104
+ eod_mask_loss=False,
105
+ )
106
+ return tokens, attention_mask, position_ids
107
+
108
+
109
+ def get_stop_words_ids(chat_format, tokenizer):
110
+ if chat_format == "raw":
111
+ stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
112
+ elif chat_format == "chatml":
113
+ stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
114
+ else:
115
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
116
+ return stop_words_ids
117
+
118
+
119
+ def make_context(
120
+ tokenizer: PreTrainedTokenizer,
121
+ query: str,
122
+ history: List[Tuple[str, str]] = None,
123
+ system: str = "",
124
+ max_window_size: int = 6144,
125
+ chat_format: str = "chatml",
126
+ ):
127
+ if history is None:
128
+ history = []
129
+
130
+ if chat_format == "chatml":
131
+ im_start, im_end = "<|im_start|>", "<|im_end|>"
132
+ im_start_tokens = [tokenizer.im_start_id]
133
+ im_end_tokens = [tokenizer.im_end_id]
134
+ nl_tokens = tokenizer.encode("\n")
135
+
136
+ def _tokenize_str(role, content):
137
+ return f"{role}\n{content}", tokenizer.encode(
138
+ role, allowed_special=set()
139
+ ) + nl_tokens + tokenizer.encode(content, allowed_special=set())
140
+
141
+ system_text, system_tokens_part = _tokenize_str("system", system)
142
+ system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
143
+
144
+ raw_text = ""
145
+ context_tokens = []
146
+
147
+ for turn_query, turn_response in reversed(history):
148
+ query_text, query_tokens_part = _tokenize_str("user", turn_query)
149
+ query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
150
+ response_text, response_tokens_part = _tokenize_str(
151
+ "assistant", turn_response
152
+ )
153
+ response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
154
+
155
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
156
+ prev_chat = (
157
+ f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
158
+ )
159
+
160
+ current_context_size = (
161
+ len(system_tokens) + len(next_context_tokens) + len(context_tokens)
162
+ )
163
+ if current_context_size < max_window_size:
164
+ context_tokens = next_context_tokens + context_tokens
165
+ raw_text = prev_chat + raw_text
166
+ else:
167
+ break
168
+
169
+ context_tokens = system_tokens + context_tokens
170
+ raw_text = f"{im_start}{system_text}{im_end}" + raw_text
171
+ context_tokens += (
172
+ nl_tokens
173
+ + im_start_tokens
174
+ + _tokenize_str("user", query)[1]
175
+ + im_end_tokens
176
+ + nl_tokens
177
+ + im_start_tokens
178
+ + tokenizer.encode("assistant")
179
+ + nl_tokens
180
+ )
181
+ raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
182
+
183
+ elif chat_format == "raw":
184
+ raw_text = query
185
+ context_tokens = tokenizer.encode(raw_text)
186
+ else:
187
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
188
+
189
+ return raw_text, context_tokens
190
+
191
+
192
+ def _decode_default(
193
+ tokens: List[int],
194
+ *,
195
+ stop_words: List[str],
196
+ eod_words: List[str],
197
+ tokenizer: PreTrainedTokenizer,
198
+ raw_text_len: int,
199
+ verbose: bool = False,
200
+ return_end_reason: bool = False,
201
+ errors: str='replace',
202
+ ):
203
+ trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
204
+ if verbose:
205
+ print("\nRaw Generate: ", trim_decode_tokens)
206
+
207
+ end_reason = f"Gen length {len(tokens)}"
208
+ for stop_word in stop_words:
209
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
210
+ for eod_word in eod_words:
211
+ if eod_word in trim_decode_tokens:
212
+ end_reason = f"Gen {eod_word!r}"
213
+ trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
214
+ trim_decode_tokens = trim_decode_tokens.strip()
215
+ if verbose:
216
+ print("\nEnd Reason:", end_reason)
217
+ print("\nGenerate: ", trim_decode_tokens)
218
+
219
+ if return_end_reason:
220
+ return trim_decode_tokens, end_reason
221
+ else:
222
+ return trim_decode_tokens
223
+
224
+
225
+ def _decode_chatml(
226
+ tokens: List[int],
227
+ *,
228
+ stop_words: List[str],
229
+ eod_token_ids: List[int],
230
+ tokenizer: PreTrainedTokenizer,
231
+ raw_text_len: int,
232
+ context_length: int,
233
+ verbose: bool = False,
234
+ return_end_reason: bool = False,
235
+ errors: str='replace'
236
+ ):
237
+ end_reason = f"Gen length {len(tokens)}"
238
+ eod_token_idx = context_length
239
+ for eod_token_idx in range(context_length, len(tokens)):
240
+ if tokens[eod_token_idx] in eod_token_ids:
241
+ end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
242
+ break
243
+
244
+ trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
245
+ if verbose:
246
+ print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
247
+ print("\nRaw Generate:", trim_decode_tokens)
248
+ print("\nEnd Reason:", end_reason)
249
+ for stop_word in stop_words:
250
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
251
+ trim_decode_tokens = trim_decode_tokens.strip()
252
+ if verbose:
253
+ print("\nGenerate:", trim_decode_tokens)
254
+
255
+ if return_end_reason:
256
+ return trim_decode_tokens, end_reason
257
+ else:
258
+ return trim_decode_tokens
259
+
260
+
261
+ def decode_tokens(
262
+ tokens: Union[torch.LongTensor, TokensType],
263
+ tokenizer: PreTrainedTokenizer,
264
+ raw_text_len: int,
265
+ context_length: int,
266
+ chat_format: str,
267
+ verbose: bool = False,
268
+ return_end_reason: bool = False,
269
+ errors: str="replace",
270
+ ) -> str:
271
+ if torch.is_tensor(tokens):
272
+ tokens = tokens.cpu().numpy().tolist()
273
+
274
+ if chat_format == "chatml":
275
+ return _decode_chatml(
276
+ tokens,
277
+ stop_words=[],
278
+ eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
279
+ tokenizer=tokenizer,
280
+ raw_text_len=raw_text_len,
281
+ context_length=context_length,
282
+ verbose=verbose,
283
+ return_end_reason=return_end_reason,
284
+ errors=errors,
285
+ )
286
+ elif chat_format == "raw":
287
+ return _decode_default(
288
+ tokens,
289
+ stop_words=["<|endoftext|>"],
290
+ eod_words=["<|endoftext|>"],
291
+ tokenizer=tokenizer,
292
+ raw_text_len=raw_text_len,
293
+ verbose=verbose,
294
+ return_end_reason=return_end_reason,
295
+ errors=errors,
296
+ )
297
+ else:
298
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
299
+
300
+
301
+ class StopWordsLogitsProcessor(LogitsProcessor):
302
+ """
303
+ :class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
304
+
305
+ Args:
306
+ stop_words_ids (:obj:`List[List[int]]`):
307
+ List of list of token ids of stop ids. In order to get the tokens of the words
308
+ that should not appear in the generated text, use :obj:`tokenizer(bad_word,
309
+ add_prefix_space=True).input_ids`.
310
+ eos_token_id (:obj:`int`):
311
+ The id of the `end-of-sequence` token.
312
+ """
313
+
314
+ def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
315
+
316
+ if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
317
+ raise ValueError(
318
+ f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
319
+ )
320
+ if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
321
+ raise ValueError(
322
+ f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
323
+ )
324
+ if any(
325
+ any(
326
+ (not isinstance(token_id, (int, np.integer)) or token_id < 0)
327
+ for token_id in stop_word_ids
328
+ )
329
+ for stop_word_ids in stop_words_ids
330
+ ):
331
+ raise ValueError(
332
+ f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
333
+ )
334
+
335
+ self.stop_words_ids = list(
336
+ filter(
337
+ lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
338
+ )
339
+ )
340
+ self.eos_token_id = eos_token_id
341
+ for stop_token_seq in self.stop_words_ids:
342
+ assert (
343
+ len(stop_token_seq) > 0
344
+ ), "Stop words token sequences {} cannot have an empty list".format(
345
+ stop_words_ids
346
+ )
347
+
348
+ def __call__(
349
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor
350
+ ) -> torch.FloatTensor:
351
+ stopped_samples = self._calc_stopped_samples(input_ids)
352
+ for i, should_stop in enumerate(stopped_samples):
353
+ if should_stop:
354
+ scores[i, self.eos_token_id] = float(2**15)
355
+ return scores
356
+
357
+ def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
358
+ if len(tokens) == 0:
359
+ # if bad word tokens is just one token always ban it
360
+ return True
361
+ elif len(tokens) > len(prev_tokens):
362
+ # if bad word tokens are longer then prev input_ids they can't be equal
363
+ return False
364
+ elif prev_tokens[-len(tokens) :].tolist() == tokens:
365
+ # if tokens match
366
+ return True
367
+ else:
368
+ return False
369
+
370
+ def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
371
+ stopped_samples = []
372
+ for prev_input_ids_slice in prev_input_ids:
373
+ match = False
374
+ for stop_token_seq in self.stop_words_ids:
375
+ if self._tokens_match(prev_input_ids_slice, stop_token_seq):
376
+ # if tokens do not match continue
377
+ match = True
378
+ break
379
+ stopped_samples.append(match)
380
+
381
+ return stopped_samples
382
+
383
+
384
+ def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
385
+ """This function has been mostly taken from huggingface conversational
386
+ ai code at
387
+ https://medium.com/huggingface/how-to-build-a-state-of-the-art-
388
+ conversational-ai-with-transfer-learning-2d818ac26313"""
389
+
390
+ if top_k > 0:
391
+ # Remove all tokens with a probability less than the
392
+ # last token of the top-k
393
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
394
+ logits[indices_to_remove] = filter_value
395
+
396
+ if top_p > 0.0:
397
+ # Cconvert to 1D
398
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
399
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
400
+
401
+ # Remove tokens with cumulative probability above the threshold
402
+ sorted_indices_to_remove = cumulative_probs > top_p
403
+ # Shift the indices to the right to keep also the first token
404
+ # above the threshold
405
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
406
+ sorted_indices_to_remove[..., 0] = 0
407
+ for i in range(sorted_indices.size(0)):
408
+ indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
409
+ logits[i][indices_to_remove] = filter_value
410
+
411
+ return logits
412
+
413
+
414
+ def switch(val1, val2, boolean):
415
+ boolean = boolean.type_as(val1)
416
+ return (1 - boolean) * val1 + boolean * val2
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<|endoftext|>"
3
+ }
tokenization_qwen.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import unicodedata
12
+ from typing import Collection, Dict, List, Set, Tuple, Union
13
+
14
+ import tiktoken
15
+ from transformers import PreTrainedTokenizer, AddedToken
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
21
+
22
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
23
+ ENDOFTEXT = "<|endoftext|>"
24
+ IMSTART = "<|im_start|>"
25
+ IMEND = "<|im_end|>"
26
+ # as the default behavior is changed to allow special tokens in
27
+ # regular texts, the surface forms of special tokens need to be
28
+ # as different as possible to minimize the impact
29
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
+ # changed to use actual index to avoid misconfiguration with vocabulary expansion
31
+ SPECIAL_START_ID = 151643
32
+ SPECIAL_TOKENS = tuple(
33
+ enumerate(
34
+ (
35
+ (
36
+ ENDOFTEXT,
37
+ IMSTART,
38
+ IMEND,
39
+ )
40
+ + EXTRAS
41
+ ),
42
+ start=SPECIAL_START_ID,
43
+ )
44
+ )
45
+ SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
46
+
47
+
48
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
49
+ with open(tiktoken_bpe_file, "rb") as f:
50
+ contents = f.read()
51
+ return {
52
+ base64.b64decode(token): int(rank)
53
+ for token, rank in (line.split() for line in contents.splitlines() if line)
54
+ }
55
+
56
+
57
+ class QWenTokenizer(PreTrainedTokenizer):
58
+ """QWen tokenizer."""
59
+
60
+ vocab_files_names = VOCAB_FILES_NAMES
61
+
62
+ def __init__(
63
+ self,
64
+ vocab_file,
65
+ errors="replace",
66
+ extra_vocab_file=None,
67
+ **kwargs,
68
+ ):
69
+ super().__init__(**kwargs)
70
+
71
+ # how to handle errors in decoding UTF-8 byte sequences
72
+ # use ignore if you are in streaming inference
73
+ self.errors = errors
74
+
75
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
76
+ self.special_tokens = {
77
+ token: index
78
+ for index, token in SPECIAL_TOKENS
79
+ }
80
+
81
+ # try load extra vocab from file
82
+ if extra_vocab_file is not None:
83
+ used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
84
+ extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
85
+ for token, index in extra_mergeable_ranks.items():
86
+ if token in self.mergeable_ranks:
87
+ logger.info(f"extra token {token} exists, skipping")
88
+ continue
89
+ if index in used_ids:
90
+ logger.info(f'the index {index} for extra token {token} exists, skipping')
91
+ continue
92
+ self.mergeable_ranks[token] = index
93
+ # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
94
+
95
+ enc = tiktoken.Encoding(
96
+ "Qwen",
97
+ pat_str=PAT_STR,
98
+ mergeable_ranks=self.mergeable_ranks,
99
+ special_tokens=self.special_tokens,
100
+ )
101
+ assert (
102
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
103
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
104
+
105
+ self.decoder = {
106
+ v: k for k, v in self.mergeable_ranks.items()
107
+ } # type: dict[int, bytes|str]
108
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
109
+
110
+ self.tokenizer = enc # type: tiktoken.Encoding
111
+
112
+ self.eod_id = self.tokenizer.eot_token
113
+ self.im_start_id = self.special_tokens[IMSTART]
114
+ self.im_end_id = self.special_tokens[IMEND]
115
+
116
+ def __getstate__(self):
117
+ # for pickle lovers
118
+ state = self.__dict__.copy()
119
+ del state["tokenizer"]
120
+ return state
121
+
122
+ def __setstate__(self, state):
123
+ # tokenizer is not python native; don't pass it; rebuild it
124
+ self.__dict__.update(state)
125
+ enc = tiktoken.Encoding(
126
+ "Qwen",
127
+ pat_str=PAT_STR,
128
+ mergeable_ranks=self.mergeable_ranks,
129
+ special_tokens=self.special_tokens,
130
+ )
131
+ self.tokenizer = enc
132
+
133
+ def __len__(self) -> int:
134
+ return self.tokenizer.n_vocab
135
+
136
+ def get_vocab(self) -> Dict[bytes, int]:
137
+ return self.mergeable_ranks
138
+
139
+ def convert_tokens_to_ids(
140
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
141
+ ) -> List[int]:
142
+ ids = []
143
+ if isinstance(tokens, (str, bytes)):
144
+ if tokens in self.special_tokens:
145
+ return self.special_tokens[tokens]
146
+ else:
147
+ return self.mergeable_ranks.get(tokens)
148
+ for token in tokens:
149
+ if token in self.special_tokens:
150
+ ids.append(self.special_tokens[token])
151
+ else:
152
+ ids.append(self.mergeable_ranks.get(token))
153
+ return ids
154
+
155
+ def _add_tokens(
156
+ self,
157
+ new_tokens: Union[List[str], List[AddedToken]],
158
+ special_tokens: bool = False,
159
+ ) -> int:
160
+ if not special_tokens and new_tokens:
161
+ raise ValueError("Adding regular tokens is not supported")
162
+ for token in new_tokens:
163
+ surface_form = token.content if isinstance(token, AddedToken) else token
164
+ if surface_form not in SPECIAL_TOKENS_SET:
165
+ raise ValueError("Adding unknown special tokens is not supported")
166
+ return 0
167
+
168
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
169
+ """
170
+ Save only the vocabulary of the tokenizer (vocabulary).
171
+
172
+ Returns:
173
+ `Tuple(str)`: Paths to the files saved.
174
+ """
175
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
176
+ with open(file_path, "w", encoding="utf8") as w:
177
+ for k, v in self.mergeable_ranks.items():
178
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
179
+ w.write(line)
180
+ return (file_path,)
181
+
182
+ def tokenize(
183
+ self,
184
+ text: str,
185
+ allowed_special: Union[Set, str] = "all",
186
+ disallowed_special: Union[Collection, str] = (),
187
+ **kwargs,
188
+ ) -> List[Union[bytes, str]]:
189
+ """
190
+ Converts a string in a sequence of tokens.
191
+
192
+ Args:
193
+ text (`str`):
194
+ The sequence to be encoded.
195
+ allowed_special (`Literal["all"]` or `set`):
196
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
197
+ Default to "all".
198
+ disallowed_special (`Literal["all"]` or `Collection`):
199
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
200
+ Default to an empty tuple.
201
+
202
+ kwargs (additional keyword arguments, *optional*):
203
+ Will be passed to the underlying model specific encode method.
204
+
205
+ Returns:
206
+ `List[bytes|str]`: The list of tokens.
207
+ """
208
+ tokens = []
209
+ text = unicodedata.normalize("NFC", text)
210
+
211
+ # this implementation takes a detour: text -> token id -> token surface forms
212
+ for t in self.tokenizer.encode(
213
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
214
+ ):
215
+ tokens.append(self.decoder[t])
216
+ return tokens
217
+
218
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
219
+ """
220
+ Converts a sequence of tokens in a single string.
221
+ """
222
+ text = ""
223
+ temp = b""
224
+ for t in tokens:
225
+ if isinstance(t, str):
226
+ if temp:
227
+ text += temp.decode("utf-8", errors=self.errors)
228
+ temp = b""
229
+ text += t
230
+ elif isinstance(t, bytes):
231
+ temp += t
232
+ else:
233
+ raise TypeError("token should only be of type types or str")
234
+ if temp:
235
+ text += temp.decode("utf-8", errors=self.errors)
236
+ return text
237
+
238
+ @property
239
+ def vocab_size(self):
240
+ return self.tokenizer.n_vocab
241
+
242
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
243
+ """Converts an id to a token, special tokens included"""
244
+ if index in self.decoder:
245
+ return self.decoder[index]
246
+ raise ValueError("unknown ids")
247
+
248
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
249
+ """Converts a token to an id using the vocab, special tokens included"""
250
+ if token in self.special_tokens:
251
+ return self.special_tokens[token]
252
+ if token in self.mergeable_ranks:
253
+ return self.mergeable_ranks[token]
254
+ raise ValueError("unknown token")
255
+
256
+ def _tokenize(self, text: str, **kwargs):
257
+ """
258
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
259
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
260
+
261
+ Do NOT take care of added tokens.
262
+ """
263
+ raise NotImplementedError
264
+
265
+ def _decode(
266
+ self,
267
+ token_ids: Union[int, List[int]],
268
+ skip_special_tokens: bool = False,
269
+ errors: str = None,
270
+ **kwargs,
271
+ ) -> str:
272
+ if isinstance(token_ids, int):
273
+ token_ids = [token_ids]
274
+ if skip_special_tokens:
275
+ token_ids = [i for i in token_ids if i < self.eod_id]
276
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoTokenizer": [
5
+ "tokenization_qwen.QWenTokenizer",
6
+ null
7
+ ]
8
+ },
9
+ "clean_up_tokenization_spaces": true,
10
+ "model_max_length": 512,
11
+ "pad_token": "<|endoftext|>",
12
+ "padding_side": "right",
13
+ "tokenizer_class": "QWenTokenizer"
14
+ }
trainer_state.json ADDED
@@ -0,0 +1,4402 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9993145990404386,
5
+ "eval_steps": 500,
6
+ "global_step": 729,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.0,
14
+ "loss": 3.7571,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 3.333333333333334e-06,
20
+ "loss": 3.624,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 5.283208335737189e-06,
26
+ "loss": 3.9204,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 6.666666666666668e-06,
32
+ "loss": 3.6252,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 7.739760316291209e-06,
38
+ "loss": 3.5256,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 8.616541669070522e-06,
44
+ "loss": 3.1918,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 9.357849740192014e-06,
50
+ "loss": 2.9474,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 1e-05,
56
+ "loss": 3.1106,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.01,
61
+ "learning_rate": 1e-05,
62
+ "loss": 2.9399,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.01,
67
+ "learning_rate": 1e-05,
68
+ "loss": 2.7671,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 1e-05,
74
+ "loss": 2.7104,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 1e-05,
80
+ "loss": 2.6174,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 1e-05,
86
+ "loss": 2.5677,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 1e-05,
92
+ "loss": 2.1427,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.02,
97
+ "learning_rate": 1e-05,
98
+ "loss": 2.6958,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.02,
103
+ "learning_rate": 1e-05,
104
+ "loss": 2.4929,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.02,
109
+ "learning_rate": 1e-05,
110
+ "loss": 2.2651,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.02,
115
+ "learning_rate": 1e-05,
116
+ "loss": 2.3931,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 1e-05,
122
+ "loss": 2.2779,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.03,
127
+ "learning_rate": 1e-05,
128
+ "loss": 2.353,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "learning_rate": 1e-05,
134
+ "loss": 2.1949,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.03,
139
+ "learning_rate": 1e-05,
140
+ "loss": 2.4163,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.03,
145
+ "learning_rate": 1e-05,
146
+ "loss": 2.0917,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.03,
151
+ "learning_rate": 1e-05,
152
+ "loss": 2.0341,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.03,
157
+ "learning_rate": 1e-05,
158
+ "loss": 1.9457,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.04,
163
+ "learning_rate": 1e-05,
164
+ "loss": 2.2169,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.04,
169
+ "learning_rate": 1e-05,
170
+ "loss": 2.2133,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.04,
175
+ "learning_rate": 1e-05,
176
+ "loss": 2.105,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.04,
181
+ "learning_rate": 1e-05,
182
+ "loss": 2.1545,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.04,
187
+ "learning_rate": 1e-05,
188
+ "loss": 1.8215,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.04,
193
+ "learning_rate": 1e-05,
194
+ "loss": 2.0513,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.04,
199
+ "learning_rate": 1e-05,
200
+ "loss": 2.089,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.05,
205
+ "learning_rate": 1e-05,
206
+ "loss": 2.1787,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.05,
211
+ "learning_rate": 1e-05,
212
+ "loss": 2.0857,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.05,
217
+ "learning_rate": 1e-05,
218
+ "loss": 1.8228,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.05,
223
+ "learning_rate": 1e-05,
224
+ "loss": 1.7794,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.05,
229
+ "learning_rate": 1e-05,
230
+ "loss": 2.1616,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.05,
235
+ "learning_rate": 1e-05,
236
+ "loss": 1.9264,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.05,
241
+ "learning_rate": 1e-05,
242
+ "loss": 2.04,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.05,
247
+ "learning_rate": 1e-05,
248
+ "loss": 2.0891,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.06,
253
+ "learning_rate": 1e-05,
254
+ "loss": 1.619,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.06,
259
+ "learning_rate": 1e-05,
260
+ "loss": 2.2679,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.06,
265
+ "learning_rate": 1e-05,
266
+ "loss": 1.922,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.06,
271
+ "learning_rate": 1e-05,
272
+ "loss": 2.0058,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.06,
277
+ "learning_rate": 1e-05,
278
+ "loss": 2.2429,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.06,
283
+ "learning_rate": 1e-05,
284
+ "loss": 1.9547,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.06,
289
+ "learning_rate": 1e-05,
290
+ "loss": 2.1516,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.07,
295
+ "learning_rate": 1e-05,
296
+ "loss": 2.0598,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.07,
301
+ "learning_rate": 1e-05,
302
+ "loss": 1.7213,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.07,
307
+ "learning_rate": 1e-05,
308
+ "loss": 1.9146,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.07,
313
+ "learning_rate": 1e-05,
314
+ "loss": 1.9552,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.07,
319
+ "learning_rate": 1e-05,
320
+ "loss": 1.7083,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.07,
325
+ "learning_rate": 1e-05,
326
+ "loss": 1.8594,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.07,
331
+ "learning_rate": 1e-05,
332
+ "loss": 1.6959,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.08,
337
+ "learning_rate": 1e-05,
338
+ "loss": 1.9453,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.08,
343
+ "learning_rate": 1e-05,
344
+ "loss": 1.9756,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.08,
349
+ "learning_rate": 1e-05,
350
+ "loss": 2.1323,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.08,
355
+ "learning_rate": 1e-05,
356
+ "loss": 1.8882,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.08,
361
+ "learning_rate": 1e-05,
362
+ "loss": 1.9266,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.08,
367
+ "learning_rate": 1e-05,
368
+ "loss": 1.8003,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.08,
373
+ "learning_rate": 1e-05,
374
+ "loss": 1.7712,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.08,
379
+ "learning_rate": 1e-05,
380
+ "loss": 2.0563,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.09,
385
+ "learning_rate": 1e-05,
386
+ "loss": 1.6903,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.09,
391
+ "learning_rate": 1e-05,
392
+ "loss": 1.7107,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.09,
397
+ "learning_rate": 1e-05,
398
+ "loss": 1.606,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.09,
403
+ "learning_rate": 1e-05,
404
+ "loss": 1.7947,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.09,
409
+ "learning_rate": 1e-05,
410
+ "loss": 1.8085,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.09,
415
+ "learning_rate": 1e-05,
416
+ "loss": 1.8558,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.09,
421
+ "learning_rate": 1e-05,
422
+ "loss": 1.8696,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.1,
427
+ "learning_rate": 1e-05,
428
+ "loss": 1.6238,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.1,
433
+ "learning_rate": 1e-05,
434
+ "loss": 1.7783,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.1,
439
+ "learning_rate": 1e-05,
440
+ "loss": 1.6956,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.1,
445
+ "learning_rate": 1e-05,
446
+ "loss": 1.8776,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.1,
451
+ "learning_rate": 1e-05,
452
+ "loss": 1.8059,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.1,
457
+ "learning_rate": 1e-05,
458
+ "loss": 1.721,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.1,
463
+ "learning_rate": 1e-05,
464
+ "loss": 1.7748,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.11,
469
+ "learning_rate": 1e-05,
470
+ "loss": 1.8159,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.11,
475
+ "learning_rate": 1e-05,
476
+ "loss": 1.9375,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.11,
481
+ "learning_rate": 1e-05,
482
+ "loss": 1.775,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.11,
487
+ "learning_rate": 1e-05,
488
+ "loss": 1.6549,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.11,
493
+ "learning_rate": 1e-05,
494
+ "loss": 1.9401,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.11,
499
+ "learning_rate": 1e-05,
500
+ "loss": 1.8199,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.11,
505
+ "learning_rate": 1e-05,
506
+ "loss": 1.6188,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.12,
511
+ "learning_rate": 1e-05,
512
+ "loss": 1.7208,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.12,
517
+ "learning_rate": 1e-05,
518
+ "loss": 1.881,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.12,
523
+ "learning_rate": 1e-05,
524
+ "loss": 1.5557,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.12,
529
+ "learning_rate": 1e-05,
530
+ "loss": 1.7011,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.12,
535
+ "learning_rate": 1e-05,
536
+ "loss": 1.9393,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.12,
541
+ "learning_rate": 1e-05,
542
+ "loss": 1.8495,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.12,
547
+ "learning_rate": 1e-05,
548
+ "loss": 1.9412,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.12,
553
+ "learning_rate": 1e-05,
554
+ "loss": 1.6088,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.13,
559
+ "learning_rate": 1e-05,
560
+ "loss": 1.7219,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.13,
565
+ "learning_rate": 1e-05,
566
+ "loss": 1.9291,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.13,
571
+ "learning_rate": 1e-05,
572
+ "loss": 2.1837,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.13,
577
+ "learning_rate": 1e-05,
578
+ "loss": 1.6232,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.13,
583
+ "learning_rate": 1e-05,
584
+ "loss": 1.6476,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.13,
589
+ "learning_rate": 1e-05,
590
+ "loss": 1.6934,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.13,
595
+ "learning_rate": 1e-05,
596
+ "loss": 1.7029,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.14,
601
+ "learning_rate": 1e-05,
602
+ "loss": 1.8186,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.14,
607
+ "learning_rate": 1e-05,
608
+ "loss": 1.8478,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.14,
613
+ "learning_rate": 1e-05,
614
+ "loss": 1.4334,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.14,
619
+ "learning_rate": 1e-05,
620
+ "loss": 1.7916,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.14,
625
+ "learning_rate": 1e-05,
626
+ "loss": 1.8307,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.14,
631
+ "learning_rate": 1e-05,
632
+ "loss": 1.7422,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.14,
637
+ "learning_rate": 1e-05,
638
+ "loss": 1.615,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.15,
643
+ "learning_rate": 1e-05,
644
+ "loss": 1.6585,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.15,
649
+ "learning_rate": 1e-05,
650
+ "loss": 1.9481,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.15,
655
+ "learning_rate": 1e-05,
656
+ "loss": 1.5223,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.15,
661
+ "learning_rate": 1e-05,
662
+ "loss": 1.8279,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.15,
667
+ "learning_rate": 1e-05,
668
+ "loss": 1.5541,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.15,
673
+ "learning_rate": 1e-05,
674
+ "loss": 1.8175,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.15,
679
+ "learning_rate": 1e-05,
680
+ "loss": 1.5625,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.15,
685
+ "learning_rate": 1e-05,
686
+ "loss": 1.983,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.16,
691
+ "learning_rate": 1e-05,
692
+ "loss": 1.64,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.16,
697
+ "learning_rate": 1e-05,
698
+ "loss": 1.5634,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.16,
703
+ "learning_rate": 1e-05,
704
+ "loss": 1.811,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.16,
709
+ "learning_rate": 1e-05,
710
+ "loss": 1.9193,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.16,
715
+ "learning_rate": 1e-05,
716
+ "loss": 1.3957,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.16,
721
+ "learning_rate": 1e-05,
722
+ "loss": 1.4065,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.16,
727
+ "learning_rate": 1e-05,
728
+ "loss": 1.8184,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.17,
733
+ "learning_rate": 1e-05,
734
+ "loss": 1.6816,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.17,
739
+ "learning_rate": 1e-05,
740
+ "loss": 1.7883,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.17,
745
+ "learning_rate": 1e-05,
746
+ "loss": 1.2636,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.17,
751
+ "learning_rate": 1e-05,
752
+ "loss": 1.7257,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.17,
757
+ "learning_rate": 1e-05,
758
+ "loss": 1.8263,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.17,
763
+ "learning_rate": 1e-05,
764
+ "loss": 1.7815,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.17,
769
+ "learning_rate": 1e-05,
770
+ "loss": 1.4648,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.18,
775
+ "learning_rate": 1e-05,
776
+ "loss": 1.7935,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.18,
781
+ "learning_rate": 1e-05,
782
+ "loss": 1.7328,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.18,
787
+ "learning_rate": 1e-05,
788
+ "loss": 1.6547,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.18,
793
+ "learning_rate": 1e-05,
794
+ "loss": 1.5887,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.18,
799
+ "learning_rate": 1e-05,
800
+ "loss": 1.7388,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.18,
805
+ "learning_rate": 1e-05,
806
+ "loss": 1.6904,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.18,
811
+ "learning_rate": 1e-05,
812
+ "loss": 2.0132,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.19,
817
+ "learning_rate": 1e-05,
818
+ "loss": 1.5199,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.19,
823
+ "learning_rate": 1e-05,
824
+ "loss": 1.476,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.19,
829
+ "learning_rate": 1e-05,
830
+ "loss": 1.5699,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.19,
835
+ "learning_rate": 1e-05,
836
+ "loss": 1.7587,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.19,
841
+ "learning_rate": 1e-05,
842
+ "loss": 1.6595,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.19,
847
+ "learning_rate": 1e-05,
848
+ "loss": 1.5561,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.19,
853
+ "learning_rate": 1e-05,
854
+ "loss": 1.6922,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.19,
859
+ "learning_rate": 1e-05,
860
+ "loss": 1.619,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.2,
865
+ "learning_rate": 1e-05,
866
+ "loss": 1.6969,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.2,
871
+ "learning_rate": 1e-05,
872
+ "loss": 1.7635,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.2,
877
+ "learning_rate": 1e-05,
878
+ "loss": 1.4982,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.2,
883
+ "learning_rate": 1e-05,
884
+ "loss": 1.5431,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.2,
889
+ "learning_rate": 1e-05,
890
+ "loss": 1.5194,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.2,
895
+ "learning_rate": 1e-05,
896
+ "loss": 1.5283,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.2,
901
+ "learning_rate": 1e-05,
902
+ "loss": 1.4764,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.21,
907
+ "learning_rate": 1e-05,
908
+ "loss": 1.7428,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.21,
913
+ "learning_rate": 1e-05,
914
+ "loss": 1.5739,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.21,
919
+ "learning_rate": 1e-05,
920
+ "loss": 1.9455,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.21,
925
+ "learning_rate": 1e-05,
926
+ "loss": 1.4836,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.21,
931
+ "learning_rate": 1e-05,
932
+ "loss": 1.4432,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.21,
937
+ "learning_rate": 1e-05,
938
+ "loss": 1.6208,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.21,
943
+ "learning_rate": 1e-05,
944
+ "loss": 1.3398,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.22,
949
+ "learning_rate": 1e-05,
950
+ "loss": 1.6181,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.22,
955
+ "learning_rate": 1e-05,
956
+ "loss": 1.4816,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.22,
961
+ "learning_rate": 1e-05,
962
+ "loss": 1.7345,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.22,
967
+ "learning_rate": 1e-05,
968
+ "loss": 1.6008,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.22,
973
+ "learning_rate": 1e-05,
974
+ "loss": 1.4235,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.22,
979
+ "learning_rate": 1e-05,
980
+ "loss": 1.4032,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.22,
985
+ "learning_rate": 1e-05,
986
+ "loss": 1.6597,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.22,
991
+ "learning_rate": 1e-05,
992
+ "loss": 1.5719,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.23,
997
+ "learning_rate": 1e-05,
998
+ "loss": 1.6354,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.23,
1003
+ "learning_rate": 1e-05,
1004
+ "loss": 1.4573,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.23,
1009
+ "learning_rate": 1e-05,
1010
+ "loss": 1.5803,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.23,
1015
+ "learning_rate": 1e-05,
1016
+ "loss": 1.658,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.23,
1021
+ "learning_rate": 1e-05,
1022
+ "loss": 1.5798,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.23,
1027
+ "learning_rate": 1e-05,
1028
+ "loss": 1.4604,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.23,
1033
+ "learning_rate": 1e-05,
1034
+ "loss": 1.5803,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.24,
1039
+ "learning_rate": 1e-05,
1040
+ "loss": 1.611,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.24,
1045
+ "learning_rate": 1e-05,
1046
+ "loss": 1.2751,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.24,
1051
+ "learning_rate": 1e-05,
1052
+ "loss": 1.5076,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.24,
1057
+ "learning_rate": 1e-05,
1058
+ "loss": 1.5532,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.24,
1063
+ "learning_rate": 1e-05,
1064
+ "loss": 1.6382,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.24,
1069
+ "learning_rate": 1e-05,
1070
+ "loss": 1.5485,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.24,
1075
+ "learning_rate": 1e-05,
1076
+ "loss": 1.395,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.25,
1081
+ "learning_rate": 1e-05,
1082
+ "loss": 1.5505,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.25,
1087
+ "learning_rate": 1e-05,
1088
+ "loss": 1.6763,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.25,
1093
+ "learning_rate": 1e-05,
1094
+ "loss": 1.6832,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.25,
1099
+ "learning_rate": 1e-05,
1100
+ "loss": 1.7668,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.25,
1105
+ "learning_rate": 1e-05,
1106
+ "loss": 1.659,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.25,
1111
+ "learning_rate": 1e-05,
1112
+ "loss": 1.8761,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.25,
1117
+ "learning_rate": 1e-05,
1118
+ "loss": 1.7204,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.25,
1123
+ "learning_rate": 1e-05,
1124
+ "loss": 1.7615,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.26,
1129
+ "learning_rate": 1e-05,
1130
+ "loss": 1.6719,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.26,
1135
+ "learning_rate": 1e-05,
1136
+ "loss": 1.6348,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.26,
1141
+ "learning_rate": 1e-05,
1142
+ "loss": 1.8078,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.26,
1147
+ "learning_rate": 1e-05,
1148
+ "loss": 1.5327,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.26,
1153
+ "learning_rate": 1e-05,
1154
+ "loss": 1.736,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.26,
1159
+ "learning_rate": 1e-05,
1160
+ "loss": 1.441,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.26,
1165
+ "learning_rate": 1e-05,
1166
+ "loss": 1.5573,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.27,
1171
+ "learning_rate": 1e-05,
1172
+ "loss": 1.4477,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.27,
1177
+ "learning_rate": 1e-05,
1178
+ "loss": 1.502,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.27,
1183
+ "learning_rate": 1e-05,
1184
+ "loss": 1.6167,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.27,
1189
+ "learning_rate": 1e-05,
1190
+ "loss": 1.54,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.27,
1195
+ "learning_rate": 1e-05,
1196
+ "loss": 1.6512,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.27,
1201
+ "learning_rate": 1e-05,
1202
+ "loss": 1.4501,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.27,
1207
+ "learning_rate": 1e-05,
1208
+ "loss": 1.2765,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.28,
1213
+ "learning_rate": 1e-05,
1214
+ "loss": 1.408,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.28,
1219
+ "learning_rate": 1e-05,
1220
+ "loss": 1.5561,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.28,
1225
+ "learning_rate": 1e-05,
1226
+ "loss": 1.643,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.28,
1231
+ "learning_rate": 1e-05,
1232
+ "loss": 1.379,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.28,
1237
+ "learning_rate": 1e-05,
1238
+ "loss": 1.5696,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.28,
1243
+ "learning_rate": 1e-05,
1244
+ "loss": 1.4753,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.28,
1249
+ "learning_rate": 1e-05,
1250
+ "loss": 1.7334,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.29,
1255
+ "learning_rate": 1e-05,
1256
+ "loss": 1.393,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.29,
1261
+ "learning_rate": 1e-05,
1262
+ "loss": 1.5177,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.29,
1267
+ "learning_rate": 1e-05,
1268
+ "loss": 1.5547,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.29,
1273
+ "learning_rate": 1e-05,
1274
+ "loss": 1.597,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.29,
1279
+ "learning_rate": 1e-05,
1280
+ "loss": 1.5884,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.29,
1285
+ "learning_rate": 1e-05,
1286
+ "loss": 1.5523,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.29,
1291
+ "learning_rate": 1e-05,
1292
+ "loss": 1.4321,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.29,
1297
+ "learning_rate": 1e-05,
1298
+ "loss": 1.5629,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.3,
1303
+ "learning_rate": 1e-05,
1304
+ "loss": 1.545,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.3,
1309
+ "learning_rate": 1e-05,
1310
+ "loss": 1.4742,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.3,
1315
+ "learning_rate": 1e-05,
1316
+ "loss": 1.4188,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.3,
1321
+ "learning_rate": 1e-05,
1322
+ "loss": 1.4225,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.3,
1327
+ "learning_rate": 1e-05,
1328
+ "loss": 1.5398,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.3,
1333
+ "learning_rate": 1e-05,
1334
+ "loss": 1.6857,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.3,
1339
+ "learning_rate": 1e-05,
1340
+ "loss": 1.6039,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.31,
1345
+ "learning_rate": 1e-05,
1346
+ "loss": 1.375,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.31,
1351
+ "learning_rate": 1e-05,
1352
+ "loss": 1.5747,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.31,
1357
+ "learning_rate": 1e-05,
1358
+ "loss": 1.6246,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.31,
1363
+ "learning_rate": 1e-05,
1364
+ "loss": 1.4102,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.31,
1369
+ "learning_rate": 1e-05,
1370
+ "loss": 1.4295,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.31,
1375
+ "learning_rate": 1e-05,
1376
+ "loss": 1.3068,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.31,
1381
+ "learning_rate": 1e-05,
1382
+ "loss": 1.5571,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.32,
1387
+ "learning_rate": 1e-05,
1388
+ "loss": 1.5746,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.32,
1393
+ "learning_rate": 1e-05,
1394
+ "loss": 1.6786,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.32,
1399
+ "learning_rate": 1e-05,
1400
+ "loss": 1.6725,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.32,
1405
+ "learning_rate": 1e-05,
1406
+ "loss": 1.3939,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.32,
1411
+ "learning_rate": 1e-05,
1412
+ "loss": 1.1849,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.32,
1417
+ "learning_rate": 1e-05,
1418
+ "loss": 1.46,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.32,
1423
+ "learning_rate": 1e-05,
1424
+ "loss": 1.3777,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.32,
1429
+ "learning_rate": 1e-05,
1430
+ "loss": 1.7902,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.33,
1435
+ "learning_rate": 1e-05,
1436
+ "loss": 1.4057,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.33,
1441
+ "learning_rate": 1e-05,
1442
+ "loss": 1.7069,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.33,
1447
+ "learning_rate": 1e-05,
1448
+ "loss": 1.6913,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.33,
1453
+ "learning_rate": 1e-05,
1454
+ "loss": 1.7906,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.33,
1459
+ "learning_rate": 1e-05,
1460
+ "loss": 1.1876,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.33,
1465
+ "learning_rate": 1e-05,
1466
+ "loss": 1.6128,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.33,
1471
+ "learning_rate": 1e-05,
1472
+ "loss": 1.5079,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.34,
1477
+ "learning_rate": 1e-05,
1478
+ "loss": 1.4811,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.34,
1483
+ "learning_rate": 1e-05,
1484
+ "loss": 1.2664,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.34,
1489
+ "learning_rate": 1e-05,
1490
+ "loss": 1.5449,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.34,
1495
+ "learning_rate": 1e-05,
1496
+ "loss": 1.264,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.34,
1501
+ "learning_rate": 1e-05,
1502
+ "loss": 1.4283,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.34,
1507
+ "learning_rate": 1e-05,
1508
+ "loss": 1.4509,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.34,
1513
+ "learning_rate": 1e-05,
1514
+ "loss": 1.6738,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.35,
1519
+ "learning_rate": 1e-05,
1520
+ "loss": 1.4787,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.35,
1525
+ "learning_rate": 1e-05,
1526
+ "loss": 1.5503,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.35,
1531
+ "learning_rate": 1e-05,
1532
+ "loss": 1.6582,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.35,
1537
+ "learning_rate": 1e-05,
1538
+ "loss": 1.4816,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.35,
1543
+ "learning_rate": 1e-05,
1544
+ "loss": 1.2487,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.35,
1549
+ "learning_rate": 1e-05,
1550
+ "loss": 1.615,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.35,
1555
+ "learning_rate": 1e-05,
1556
+ "loss": 1.3042,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.36,
1561
+ "learning_rate": 1e-05,
1562
+ "loss": 1.7656,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.36,
1567
+ "learning_rate": 1e-05,
1568
+ "loss": 1.2684,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.36,
1573
+ "learning_rate": 1e-05,
1574
+ "loss": 1.368,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.36,
1579
+ "learning_rate": 1e-05,
1580
+ "loss": 1.3118,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.36,
1585
+ "learning_rate": 1e-05,
1586
+ "loss": 1.3155,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.36,
1591
+ "learning_rate": 1e-05,
1592
+ "loss": 1.3507,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.36,
1597
+ "learning_rate": 1e-05,
1598
+ "loss": 1.3469,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.36,
1603
+ "learning_rate": 1e-05,
1604
+ "loss": 1.6111,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.37,
1609
+ "learning_rate": 1e-05,
1610
+ "loss": 1.4193,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.37,
1615
+ "learning_rate": 1e-05,
1616
+ "loss": 1.166,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.37,
1621
+ "learning_rate": 1e-05,
1622
+ "loss": 1.1452,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.37,
1627
+ "learning_rate": 1e-05,
1628
+ "loss": 1.463,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.37,
1633
+ "learning_rate": 1e-05,
1634
+ "loss": 1.4366,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.37,
1639
+ "learning_rate": 1e-05,
1640
+ "loss": 1.3703,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.37,
1645
+ "learning_rate": 1e-05,
1646
+ "loss": 1.3085,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.38,
1651
+ "learning_rate": 1e-05,
1652
+ "loss": 1.4733,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.38,
1657
+ "learning_rate": 1e-05,
1658
+ "loss": 1.2689,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.38,
1663
+ "learning_rate": 1e-05,
1664
+ "loss": 1.0594,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.38,
1669
+ "learning_rate": 1e-05,
1670
+ "loss": 1.3486,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.38,
1675
+ "learning_rate": 1e-05,
1676
+ "loss": 1.3228,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.38,
1681
+ "learning_rate": 1e-05,
1682
+ "loss": 1.3364,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.38,
1687
+ "learning_rate": 1e-05,
1688
+ "loss": 1.4263,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.39,
1693
+ "learning_rate": 1e-05,
1694
+ "loss": 1.2621,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.39,
1699
+ "learning_rate": 1e-05,
1700
+ "loss": 1.3835,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.39,
1705
+ "learning_rate": 1e-05,
1706
+ "loss": 1.4006,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.39,
1711
+ "learning_rate": 1e-05,
1712
+ "loss": 1.6985,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.39,
1717
+ "learning_rate": 1e-05,
1718
+ "loss": 1.1841,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.39,
1723
+ "learning_rate": 1e-05,
1724
+ "loss": 1.3197,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.39,
1729
+ "learning_rate": 1e-05,
1730
+ "loss": 1.6785,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.39,
1735
+ "learning_rate": 1e-05,
1736
+ "loss": 1.446,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.4,
1741
+ "learning_rate": 1e-05,
1742
+ "loss": 1.4342,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.4,
1747
+ "learning_rate": 1e-05,
1748
+ "loss": 1.535,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.4,
1753
+ "learning_rate": 1e-05,
1754
+ "loss": 1.4971,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.4,
1759
+ "learning_rate": 1e-05,
1760
+ "loss": 1.4941,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.4,
1765
+ "learning_rate": 1e-05,
1766
+ "loss": 1.3675,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.4,
1771
+ "learning_rate": 1e-05,
1772
+ "loss": 1.5556,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.4,
1777
+ "learning_rate": 1e-05,
1778
+ "loss": 1.4217,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.41,
1783
+ "learning_rate": 1e-05,
1784
+ "loss": 1.3199,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.41,
1789
+ "learning_rate": 1e-05,
1790
+ "loss": 1.3854,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.41,
1795
+ "learning_rate": 1e-05,
1796
+ "loss": 1.4666,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.41,
1801
+ "learning_rate": 1e-05,
1802
+ "loss": 1.4939,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.41,
1807
+ "learning_rate": 1e-05,
1808
+ "loss": 1.3245,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.41,
1813
+ "learning_rate": 1e-05,
1814
+ "loss": 1.3592,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.41,
1819
+ "learning_rate": 1e-05,
1820
+ "loss": 1.4313,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.42,
1825
+ "learning_rate": 1e-05,
1826
+ "loss": 1.5373,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.42,
1831
+ "learning_rate": 1e-05,
1832
+ "loss": 1.4095,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.42,
1837
+ "learning_rate": 1e-05,
1838
+ "loss": 1.125,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.42,
1843
+ "learning_rate": 1e-05,
1844
+ "loss": 1.4698,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.42,
1849
+ "learning_rate": 1e-05,
1850
+ "loss": 1.366,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.42,
1855
+ "learning_rate": 1e-05,
1856
+ "loss": 1.1242,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.42,
1861
+ "learning_rate": 1e-05,
1862
+ "loss": 1.5119,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.42,
1867
+ "learning_rate": 1e-05,
1868
+ "loss": 1.4328,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.43,
1873
+ "learning_rate": 1e-05,
1874
+ "loss": 1.5072,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.43,
1879
+ "learning_rate": 1e-05,
1880
+ "loss": 1.4553,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.43,
1885
+ "learning_rate": 1e-05,
1886
+ "loss": 1.3752,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.43,
1891
+ "learning_rate": 1e-05,
1892
+ "loss": 1.468,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.43,
1897
+ "learning_rate": 1e-05,
1898
+ "loss": 1.3314,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.43,
1903
+ "learning_rate": 1e-05,
1904
+ "loss": 1.2516,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.43,
1909
+ "learning_rate": 1e-05,
1910
+ "loss": 1.1767,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.44,
1915
+ "learning_rate": 1e-05,
1916
+ "loss": 1.4673,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.44,
1921
+ "learning_rate": 1e-05,
1922
+ "loss": 1.2966,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.44,
1927
+ "learning_rate": 1e-05,
1928
+ "loss": 1.5219,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.44,
1933
+ "learning_rate": 1e-05,
1934
+ "loss": 1.3888,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.44,
1939
+ "learning_rate": 1e-05,
1940
+ "loss": 1.1928,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.44,
1945
+ "learning_rate": 1e-05,
1946
+ "loss": 1.2237,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.44,
1951
+ "learning_rate": 1e-05,
1952
+ "loss": 1.5836,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.45,
1957
+ "learning_rate": 1e-05,
1958
+ "loss": 1.3396,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.45,
1963
+ "learning_rate": 1e-05,
1964
+ "loss": 1.3447,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.45,
1969
+ "learning_rate": 1e-05,
1970
+ "loss": 1.7417,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.45,
1975
+ "learning_rate": 1e-05,
1976
+ "loss": 1.3853,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.45,
1981
+ "learning_rate": 1e-05,
1982
+ "loss": 1.3199,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.45,
1987
+ "learning_rate": 1e-05,
1988
+ "loss": 1.4855,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.45,
1993
+ "learning_rate": 1e-05,
1994
+ "loss": 1.3145,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.46,
1999
+ "learning_rate": 1e-05,
2000
+ "loss": 1.3693,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.46,
2005
+ "learning_rate": 1e-05,
2006
+ "loss": 1.2076,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.46,
2011
+ "learning_rate": 1e-05,
2012
+ "loss": 1.2921,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.46,
2017
+ "learning_rate": 1e-05,
2018
+ "loss": 1.0672,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.46,
2023
+ "learning_rate": 1e-05,
2024
+ "loss": 1.3637,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.46,
2029
+ "learning_rate": 1e-05,
2030
+ "loss": 1.4431,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.46,
2035
+ "learning_rate": 1e-05,
2036
+ "loss": 1.5392,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.46,
2041
+ "learning_rate": 1e-05,
2042
+ "loss": 1.0652,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.47,
2047
+ "learning_rate": 1e-05,
2048
+ "loss": 1.3007,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.47,
2053
+ "learning_rate": 1e-05,
2054
+ "loss": 1.2717,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.47,
2059
+ "learning_rate": 1e-05,
2060
+ "loss": 1.5882,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.47,
2065
+ "learning_rate": 1e-05,
2066
+ "loss": 1.4684,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.47,
2071
+ "learning_rate": 1e-05,
2072
+ "loss": 1.2436,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.47,
2077
+ "learning_rate": 1e-05,
2078
+ "loss": 1.4324,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.47,
2083
+ "learning_rate": 1e-05,
2084
+ "loss": 1.2346,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.48,
2089
+ "learning_rate": 1e-05,
2090
+ "loss": 1.3291,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.48,
2095
+ "learning_rate": 1e-05,
2096
+ "loss": 1.3582,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.48,
2101
+ "learning_rate": 1e-05,
2102
+ "loss": 1.3631,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.48,
2107
+ "learning_rate": 1e-05,
2108
+ "loss": 1.3616,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.48,
2113
+ "learning_rate": 1e-05,
2114
+ "loss": 1.3047,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.48,
2119
+ "learning_rate": 1e-05,
2120
+ "loss": 1.4813,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.48,
2125
+ "learning_rate": 1e-05,
2126
+ "loss": 1.6418,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.49,
2131
+ "learning_rate": 1e-05,
2132
+ "loss": 1.3388,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.49,
2137
+ "learning_rate": 1e-05,
2138
+ "loss": 1.0211,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.49,
2143
+ "learning_rate": 1e-05,
2144
+ "loss": 1.5099,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.49,
2149
+ "learning_rate": 1e-05,
2150
+ "loss": 1.3719,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.49,
2155
+ "learning_rate": 1e-05,
2156
+ "loss": 1.3137,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.49,
2161
+ "learning_rate": 1e-05,
2162
+ "loss": 1.4402,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.49,
2167
+ "learning_rate": 1e-05,
2168
+ "loss": 1.4835,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.49,
2173
+ "learning_rate": 1e-05,
2174
+ "loss": 1.2177,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.5,
2179
+ "learning_rate": 1e-05,
2180
+ "loss": 1.3922,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.5,
2185
+ "learning_rate": 1e-05,
2186
+ "loss": 1.3434,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.5,
2191
+ "learning_rate": 1e-05,
2192
+ "loss": 1.4164,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.5,
2197
+ "learning_rate": 1e-05,
2198
+ "loss": 1.1188,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.5,
2203
+ "learning_rate": 1e-05,
2204
+ "loss": 1.1328,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.5,
2209
+ "learning_rate": 1e-05,
2210
+ "loss": 1.2523,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.5,
2215
+ "learning_rate": 1e-05,
2216
+ "loss": 1.545,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.51,
2221
+ "learning_rate": 1e-05,
2222
+ "loss": 1.4388,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 0.51,
2227
+ "learning_rate": 1e-05,
2228
+ "loss": 1.4793,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 0.51,
2233
+ "learning_rate": 1e-05,
2234
+ "loss": 1.1976,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 0.51,
2239
+ "learning_rate": 1e-05,
2240
+ "loss": 1.3541,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 0.51,
2245
+ "learning_rate": 1e-05,
2246
+ "loss": 1.4752,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 0.51,
2251
+ "learning_rate": 1e-05,
2252
+ "loss": 1.4665,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 0.51,
2257
+ "learning_rate": 1e-05,
2258
+ "loss": 1.3125,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 0.52,
2263
+ "learning_rate": 1e-05,
2264
+ "loss": 1.2853,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 0.52,
2269
+ "learning_rate": 1e-05,
2270
+ "loss": 1.5306,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 0.52,
2275
+ "learning_rate": 1e-05,
2276
+ "loss": 1.4491,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 0.52,
2281
+ "learning_rate": 1e-05,
2282
+ "loss": 1.3014,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 0.52,
2287
+ "learning_rate": 1e-05,
2288
+ "loss": 1.5201,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 0.52,
2293
+ "learning_rate": 1e-05,
2294
+ "loss": 1.4558,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 0.52,
2299
+ "learning_rate": 1e-05,
2300
+ "loss": 1.2232,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 0.53,
2305
+ "learning_rate": 1e-05,
2306
+ "loss": 1.3826,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 0.53,
2311
+ "learning_rate": 1e-05,
2312
+ "loss": 1.448,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 0.53,
2317
+ "learning_rate": 1e-05,
2318
+ "loss": 1.3078,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 0.53,
2323
+ "learning_rate": 1e-05,
2324
+ "loss": 1.1926,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 0.53,
2329
+ "learning_rate": 1e-05,
2330
+ "loss": 1.4119,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 0.53,
2335
+ "learning_rate": 1e-05,
2336
+ "loss": 1.2808,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 0.53,
2341
+ "learning_rate": 1e-05,
2342
+ "loss": 1.2987,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 0.53,
2347
+ "learning_rate": 1e-05,
2348
+ "loss": 1.2261,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 0.54,
2353
+ "learning_rate": 1e-05,
2354
+ "loss": 1.3246,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 0.54,
2359
+ "learning_rate": 1e-05,
2360
+ "loss": 1.4639,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 0.54,
2365
+ "learning_rate": 1e-05,
2366
+ "loss": 1.2279,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 0.54,
2371
+ "learning_rate": 1e-05,
2372
+ "loss": 1.53,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 0.54,
2377
+ "learning_rate": 1e-05,
2378
+ "loss": 1.3108,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 0.54,
2383
+ "learning_rate": 1e-05,
2384
+ "loss": 1.3875,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 0.54,
2389
+ "learning_rate": 1e-05,
2390
+ "loss": 1.2812,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 0.55,
2395
+ "learning_rate": 1e-05,
2396
+ "loss": 1.1143,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 0.55,
2401
+ "learning_rate": 1e-05,
2402
+ "loss": 1.0317,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 0.55,
2407
+ "learning_rate": 1e-05,
2408
+ "loss": 1.1922,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 0.55,
2413
+ "learning_rate": 1e-05,
2414
+ "loss": 1.2728,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 0.55,
2419
+ "learning_rate": 1e-05,
2420
+ "loss": 1.4347,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 0.55,
2425
+ "learning_rate": 1e-05,
2426
+ "loss": 1.222,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 0.55,
2431
+ "learning_rate": 1e-05,
2432
+ "loss": 1.3463,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 0.56,
2437
+ "learning_rate": 1e-05,
2438
+ "loss": 1.3814,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 0.56,
2443
+ "learning_rate": 1e-05,
2444
+ "loss": 1.0195,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 0.56,
2449
+ "learning_rate": 1e-05,
2450
+ "loss": 1.3031,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 0.56,
2455
+ "learning_rate": 1e-05,
2456
+ "loss": 1.1407,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 0.56,
2461
+ "learning_rate": 1e-05,
2462
+ "loss": 1.3196,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 0.56,
2467
+ "learning_rate": 1e-05,
2468
+ "loss": 1.5662,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 0.56,
2473
+ "learning_rate": 1e-05,
2474
+ "loss": 1.4519,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 0.56,
2479
+ "learning_rate": 1e-05,
2480
+ "loss": 1.271,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 0.57,
2485
+ "learning_rate": 1e-05,
2486
+ "loss": 1.126,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 0.57,
2491
+ "learning_rate": 1e-05,
2492
+ "loss": 1.2276,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 0.57,
2497
+ "learning_rate": 1e-05,
2498
+ "loss": 1.4225,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 0.57,
2503
+ "learning_rate": 1e-05,
2504
+ "loss": 1.4327,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 0.57,
2509
+ "learning_rate": 1e-05,
2510
+ "loss": 1.2749,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 0.57,
2515
+ "learning_rate": 1e-05,
2516
+ "loss": 1.537,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 0.57,
2521
+ "learning_rate": 1e-05,
2522
+ "loss": 1.4696,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 0.58,
2527
+ "learning_rate": 1e-05,
2528
+ "loss": 1.2686,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 0.58,
2533
+ "learning_rate": 1e-05,
2534
+ "loss": 1.3604,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 0.58,
2539
+ "learning_rate": 1e-05,
2540
+ "loss": 1.2854,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 0.58,
2545
+ "learning_rate": 1e-05,
2546
+ "loss": 1.0215,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 0.58,
2551
+ "learning_rate": 1e-05,
2552
+ "loss": 1.2871,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 0.58,
2557
+ "learning_rate": 1e-05,
2558
+ "loss": 1.3841,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 0.58,
2563
+ "learning_rate": 1e-05,
2564
+ "loss": 1.4487,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 0.59,
2569
+ "learning_rate": 1e-05,
2570
+ "loss": 1.3908,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 0.59,
2575
+ "learning_rate": 1e-05,
2576
+ "loss": 1.4015,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 0.59,
2581
+ "learning_rate": 1e-05,
2582
+ "loss": 1.2585,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 0.59,
2587
+ "learning_rate": 1e-05,
2588
+ "loss": 1.3472,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 0.59,
2593
+ "learning_rate": 1e-05,
2594
+ "loss": 1.0587,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 0.59,
2599
+ "learning_rate": 1e-05,
2600
+ "loss": 1.3713,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 0.59,
2605
+ "learning_rate": 1e-05,
2606
+ "loss": 1.2885,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 0.59,
2611
+ "learning_rate": 1e-05,
2612
+ "loss": 1.3062,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 0.6,
2617
+ "learning_rate": 1e-05,
2618
+ "loss": 1.2972,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 0.6,
2623
+ "learning_rate": 1e-05,
2624
+ "loss": 1.1511,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 0.6,
2629
+ "learning_rate": 1e-05,
2630
+ "loss": 1.0984,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 0.6,
2635
+ "learning_rate": 1e-05,
2636
+ "loss": 1.3867,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 0.6,
2641
+ "learning_rate": 1e-05,
2642
+ "loss": 1.2911,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 0.6,
2647
+ "learning_rate": 1e-05,
2648
+ "loss": 1.3166,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 0.6,
2653
+ "learning_rate": 1e-05,
2654
+ "loss": 1.2634,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 0.61,
2659
+ "learning_rate": 1e-05,
2660
+ "loss": 1.15,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 0.61,
2665
+ "learning_rate": 1e-05,
2666
+ "loss": 1.4679,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 0.61,
2671
+ "learning_rate": 1e-05,
2672
+ "loss": 1.0064,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 0.61,
2677
+ "learning_rate": 1e-05,
2678
+ "loss": 1.2911,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 0.61,
2683
+ "learning_rate": 1e-05,
2684
+ "loss": 1.3591,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 0.61,
2689
+ "learning_rate": 1e-05,
2690
+ "loss": 1.1859,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 0.61,
2695
+ "learning_rate": 1e-05,
2696
+ "loss": 1.0636,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 0.62,
2701
+ "learning_rate": 1e-05,
2702
+ "loss": 1.3457,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 0.62,
2707
+ "learning_rate": 1e-05,
2708
+ "loss": 1.1422,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 0.62,
2713
+ "learning_rate": 1e-05,
2714
+ "loss": 1.4494,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 0.62,
2719
+ "learning_rate": 1e-05,
2720
+ "loss": 1.196,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 0.62,
2725
+ "learning_rate": 1e-05,
2726
+ "loss": 1.3039,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 0.62,
2731
+ "learning_rate": 1e-05,
2732
+ "loss": 1.353,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 0.62,
2737
+ "learning_rate": 1e-05,
2738
+ "loss": 1.3644,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 0.63,
2743
+ "learning_rate": 1e-05,
2744
+ "loss": 1.1362,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 0.63,
2749
+ "learning_rate": 1e-05,
2750
+ "loss": 1.2784,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 0.63,
2755
+ "learning_rate": 1e-05,
2756
+ "loss": 1.3314,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 0.63,
2761
+ "learning_rate": 1e-05,
2762
+ "loss": 1.3801,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 0.63,
2767
+ "learning_rate": 1e-05,
2768
+ "loss": 1.2218,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 0.63,
2773
+ "learning_rate": 1e-05,
2774
+ "loss": 1.021,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 0.63,
2779
+ "learning_rate": 1e-05,
2780
+ "loss": 1.0561,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 0.63,
2785
+ "learning_rate": 1e-05,
2786
+ "loss": 1.0826,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 0.64,
2791
+ "learning_rate": 1e-05,
2792
+ "loss": 1.19,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 0.64,
2797
+ "learning_rate": 1e-05,
2798
+ "loss": 1.4989,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 0.64,
2803
+ "learning_rate": 1e-05,
2804
+ "loss": 1.2837,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 0.64,
2809
+ "learning_rate": 1e-05,
2810
+ "loss": 1.3075,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 0.64,
2815
+ "learning_rate": 1e-05,
2816
+ "loss": 1.1891,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 0.64,
2821
+ "learning_rate": 1e-05,
2822
+ "loss": 1.3762,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 0.64,
2827
+ "learning_rate": 1e-05,
2828
+ "loss": 1.295,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 0.65,
2833
+ "learning_rate": 1e-05,
2834
+ "loss": 1.2485,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 0.65,
2839
+ "learning_rate": 1e-05,
2840
+ "loss": 1.4234,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 0.65,
2845
+ "learning_rate": 1e-05,
2846
+ "loss": 1.0153,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 0.65,
2851
+ "learning_rate": 1e-05,
2852
+ "loss": 1.367,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 0.65,
2857
+ "learning_rate": 1e-05,
2858
+ "loss": 1.1507,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 0.65,
2863
+ "learning_rate": 1e-05,
2864
+ "loss": 1.4302,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 0.65,
2869
+ "learning_rate": 1e-05,
2870
+ "loss": 1.3279,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 0.66,
2875
+ "learning_rate": 1e-05,
2876
+ "loss": 1.2813,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 0.66,
2881
+ "learning_rate": 1e-05,
2882
+ "loss": 1.1196,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 0.66,
2887
+ "learning_rate": 1e-05,
2888
+ "loss": 1.356,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 0.66,
2893
+ "learning_rate": 1e-05,
2894
+ "loss": 0.9829,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 0.66,
2899
+ "learning_rate": 1e-05,
2900
+ "loss": 1.1147,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 0.66,
2905
+ "learning_rate": 1e-05,
2906
+ "loss": 1.1877,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 0.66,
2911
+ "learning_rate": 1e-05,
2912
+ "loss": 1.1869,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 0.66,
2917
+ "learning_rate": 1e-05,
2918
+ "loss": 1.2238,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 0.67,
2923
+ "learning_rate": 1e-05,
2924
+ "loss": 1.0242,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 0.67,
2929
+ "learning_rate": 1e-05,
2930
+ "loss": 1.3016,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 0.67,
2935
+ "learning_rate": 1e-05,
2936
+ "loss": 1.2528,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 0.67,
2941
+ "learning_rate": 1e-05,
2942
+ "loss": 1.4698,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 0.67,
2947
+ "learning_rate": 1e-05,
2948
+ "loss": 1.2011,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 0.67,
2953
+ "learning_rate": 1e-05,
2954
+ "loss": 1.298,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 0.67,
2959
+ "learning_rate": 1e-05,
2960
+ "loss": 0.977,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 0.68,
2965
+ "learning_rate": 1e-05,
2966
+ "loss": 1.3224,
2967
+ "step": 493
2968
+ },
2969
+ {
2970
+ "epoch": 0.68,
2971
+ "learning_rate": 1e-05,
2972
+ "loss": 1.1522,
2973
+ "step": 494
2974
+ },
2975
+ {
2976
+ "epoch": 0.68,
2977
+ "learning_rate": 1e-05,
2978
+ "loss": 1.3151,
2979
+ "step": 495
2980
+ },
2981
+ {
2982
+ "epoch": 0.68,
2983
+ "learning_rate": 1e-05,
2984
+ "loss": 0.9746,
2985
+ "step": 496
2986
+ },
2987
+ {
2988
+ "epoch": 0.68,
2989
+ "learning_rate": 1e-05,
2990
+ "loss": 1.167,
2991
+ "step": 497
2992
+ },
2993
+ {
2994
+ "epoch": 0.68,
2995
+ "learning_rate": 1e-05,
2996
+ "loss": 1.2231,
2997
+ "step": 498
2998
+ },
2999
+ {
3000
+ "epoch": 0.68,
3001
+ "learning_rate": 1e-05,
3002
+ "loss": 1.2048,
3003
+ "step": 499
3004
+ },
3005
+ {
3006
+ "epoch": 0.69,
3007
+ "learning_rate": 1e-05,
3008
+ "loss": 0.9615,
3009
+ "step": 500
3010
+ },
3011
+ {
3012
+ "epoch": 0.69,
3013
+ "learning_rate": 1e-05,
3014
+ "loss": 0.9769,
3015
+ "step": 501
3016
+ },
3017
+ {
3018
+ "epoch": 0.69,
3019
+ "learning_rate": 1e-05,
3020
+ "loss": 1.2813,
3021
+ "step": 502
3022
+ },
3023
+ {
3024
+ "epoch": 0.69,
3025
+ "learning_rate": 1e-05,
3026
+ "loss": 1.2979,
3027
+ "step": 503
3028
+ },
3029
+ {
3030
+ "epoch": 0.69,
3031
+ "learning_rate": 1e-05,
3032
+ "loss": 1.1847,
3033
+ "step": 504
3034
+ },
3035
+ {
3036
+ "epoch": 0.69,
3037
+ "learning_rate": 1e-05,
3038
+ "loss": 1.2916,
3039
+ "step": 505
3040
+ },
3041
+ {
3042
+ "epoch": 0.69,
3043
+ "learning_rate": 1e-05,
3044
+ "loss": 1.2963,
3045
+ "step": 506
3046
+ },
3047
+ {
3048
+ "epoch": 0.69,
3049
+ "learning_rate": 1e-05,
3050
+ "loss": 1.2797,
3051
+ "step": 507
3052
+ },
3053
+ {
3054
+ "epoch": 0.7,
3055
+ "learning_rate": 1e-05,
3056
+ "loss": 1.5743,
3057
+ "step": 508
3058
+ },
3059
+ {
3060
+ "epoch": 0.7,
3061
+ "learning_rate": 1e-05,
3062
+ "loss": 1.2985,
3063
+ "step": 509
3064
+ },
3065
+ {
3066
+ "epoch": 0.7,
3067
+ "learning_rate": 1e-05,
3068
+ "loss": 1.3771,
3069
+ "step": 510
3070
+ },
3071
+ {
3072
+ "epoch": 0.7,
3073
+ "learning_rate": 1e-05,
3074
+ "loss": 1.2798,
3075
+ "step": 511
3076
+ },
3077
+ {
3078
+ "epoch": 0.7,
3079
+ "learning_rate": 1e-05,
3080
+ "loss": 1.0678,
3081
+ "step": 512
3082
+ },
3083
+ {
3084
+ "epoch": 0.7,
3085
+ "learning_rate": 1e-05,
3086
+ "loss": 1.3013,
3087
+ "step": 513
3088
+ },
3089
+ {
3090
+ "epoch": 0.7,
3091
+ "learning_rate": 1e-05,
3092
+ "loss": 1.2849,
3093
+ "step": 514
3094
+ },
3095
+ {
3096
+ "epoch": 0.71,
3097
+ "learning_rate": 1e-05,
3098
+ "loss": 1.1557,
3099
+ "step": 515
3100
+ },
3101
+ {
3102
+ "epoch": 0.71,
3103
+ "learning_rate": 1e-05,
3104
+ "loss": 1.353,
3105
+ "step": 516
3106
+ },
3107
+ {
3108
+ "epoch": 0.71,
3109
+ "learning_rate": 1e-05,
3110
+ "loss": 1.3528,
3111
+ "step": 517
3112
+ },
3113
+ {
3114
+ "epoch": 0.71,
3115
+ "learning_rate": 1e-05,
3116
+ "loss": 1.2992,
3117
+ "step": 518
3118
+ },
3119
+ {
3120
+ "epoch": 0.71,
3121
+ "learning_rate": 1e-05,
3122
+ "loss": 1.3185,
3123
+ "step": 519
3124
+ },
3125
+ {
3126
+ "epoch": 0.71,
3127
+ "learning_rate": 1e-05,
3128
+ "loss": 1.1575,
3129
+ "step": 520
3130
+ },
3131
+ {
3132
+ "epoch": 0.71,
3133
+ "learning_rate": 1e-05,
3134
+ "loss": 1.1214,
3135
+ "step": 521
3136
+ },
3137
+ {
3138
+ "epoch": 0.72,
3139
+ "learning_rate": 1e-05,
3140
+ "loss": 0.9405,
3141
+ "step": 522
3142
+ },
3143
+ {
3144
+ "epoch": 0.72,
3145
+ "learning_rate": 1e-05,
3146
+ "loss": 1.3758,
3147
+ "step": 523
3148
+ },
3149
+ {
3150
+ "epoch": 0.72,
3151
+ "learning_rate": 1e-05,
3152
+ "loss": 1.3093,
3153
+ "step": 524
3154
+ },
3155
+ {
3156
+ "epoch": 0.72,
3157
+ "learning_rate": 1e-05,
3158
+ "loss": 1.2981,
3159
+ "step": 525
3160
+ },
3161
+ {
3162
+ "epoch": 0.72,
3163
+ "learning_rate": 1e-05,
3164
+ "loss": 1.1522,
3165
+ "step": 526
3166
+ },
3167
+ {
3168
+ "epoch": 0.72,
3169
+ "learning_rate": 1e-05,
3170
+ "loss": 1.322,
3171
+ "step": 527
3172
+ },
3173
+ {
3174
+ "epoch": 0.72,
3175
+ "learning_rate": 1e-05,
3176
+ "loss": 1.2559,
3177
+ "step": 528
3178
+ },
3179
+ {
3180
+ "epoch": 0.73,
3181
+ "learning_rate": 1e-05,
3182
+ "loss": 1.1047,
3183
+ "step": 529
3184
+ },
3185
+ {
3186
+ "epoch": 0.73,
3187
+ "learning_rate": 1e-05,
3188
+ "loss": 1.4091,
3189
+ "step": 530
3190
+ },
3191
+ {
3192
+ "epoch": 0.73,
3193
+ "learning_rate": 1e-05,
3194
+ "loss": 1.0045,
3195
+ "step": 531
3196
+ },
3197
+ {
3198
+ "epoch": 0.73,
3199
+ "learning_rate": 1e-05,
3200
+ "loss": 1.2765,
3201
+ "step": 532
3202
+ },
3203
+ {
3204
+ "epoch": 0.73,
3205
+ "learning_rate": 1e-05,
3206
+ "loss": 1.2671,
3207
+ "step": 533
3208
+ },
3209
+ {
3210
+ "epoch": 0.73,
3211
+ "learning_rate": 1e-05,
3212
+ "loss": 1.2466,
3213
+ "step": 534
3214
+ },
3215
+ {
3216
+ "epoch": 0.73,
3217
+ "learning_rate": 1e-05,
3218
+ "loss": 1.3524,
3219
+ "step": 535
3220
+ },
3221
+ {
3222
+ "epoch": 0.73,
3223
+ "learning_rate": 1e-05,
3224
+ "loss": 1.2466,
3225
+ "step": 536
3226
+ },
3227
+ {
3228
+ "epoch": 0.74,
3229
+ "learning_rate": 1e-05,
3230
+ "loss": 1.1754,
3231
+ "step": 537
3232
+ },
3233
+ {
3234
+ "epoch": 0.74,
3235
+ "learning_rate": 1e-05,
3236
+ "loss": 1.4108,
3237
+ "step": 538
3238
+ },
3239
+ {
3240
+ "epoch": 0.74,
3241
+ "learning_rate": 1e-05,
3242
+ "loss": 1.0907,
3243
+ "step": 539
3244
+ },
3245
+ {
3246
+ "epoch": 0.74,
3247
+ "learning_rate": 1e-05,
3248
+ "loss": 1.2495,
3249
+ "step": 540
3250
+ },
3251
+ {
3252
+ "epoch": 0.74,
3253
+ "learning_rate": 1e-05,
3254
+ "loss": 1.4228,
3255
+ "step": 541
3256
+ },
3257
+ {
3258
+ "epoch": 0.74,
3259
+ "learning_rate": 1e-05,
3260
+ "loss": 1.3303,
3261
+ "step": 542
3262
+ },
3263
+ {
3264
+ "epoch": 0.74,
3265
+ "learning_rate": 1e-05,
3266
+ "loss": 1.4513,
3267
+ "step": 543
3268
+ },
3269
+ {
3270
+ "epoch": 0.75,
3271
+ "learning_rate": 1e-05,
3272
+ "loss": 1.0478,
3273
+ "step": 544
3274
+ },
3275
+ {
3276
+ "epoch": 0.75,
3277
+ "learning_rate": 1e-05,
3278
+ "loss": 1.1141,
3279
+ "step": 545
3280
+ },
3281
+ {
3282
+ "epoch": 0.75,
3283
+ "learning_rate": 1e-05,
3284
+ "loss": 1.1941,
3285
+ "step": 546
3286
+ },
3287
+ {
3288
+ "epoch": 0.75,
3289
+ "learning_rate": 1e-05,
3290
+ "loss": 1.2352,
3291
+ "step": 547
3292
+ },
3293
+ {
3294
+ "epoch": 0.75,
3295
+ "learning_rate": 1e-05,
3296
+ "loss": 1.3497,
3297
+ "step": 548
3298
+ },
3299
+ {
3300
+ "epoch": 0.75,
3301
+ "learning_rate": 1e-05,
3302
+ "loss": 1.276,
3303
+ "step": 549
3304
+ },
3305
+ {
3306
+ "epoch": 0.75,
3307
+ "learning_rate": 1e-05,
3308
+ "loss": 1.2045,
3309
+ "step": 550
3310
+ },
3311
+ {
3312
+ "epoch": 0.76,
3313
+ "learning_rate": 1e-05,
3314
+ "loss": 1.0945,
3315
+ "step": 551
3316
+ },
3317
+ {
3318
+ "epoch": 0.76,
3319
+ "learning_rate": 1e-05,
3320
+ "loss": 1.1572,
3321
+ "step": 552
3322
+ },
3323
+ {
3324
+ "epoch": 0.76,
3325
+ "learning_rate": 1e-05,
3326
+ "loss": 1.4123,
3327
+ "step": 553
3328
+ },
3329
+ {
3330
+ "epoch": 0.76,
3331
+ "learning_rate": 1e-05,
3332
+ "loss": 1.2647,
3333
+ "step": 554
3334
+ },
3335
+ {
3336
+ "epoch": 0.76,
3337
+ "learning_rate": 1e-05,
3338
+ "loss": 1.1335,
3339
+ "step": 555
3340
+ },
3341
+ {
3342
+ "epoch": 0.76,
3343
+ "learning_rate": 1e-05,
3344
+ "loss": 1.2252,
3345
+ "step": 556
3346
+ },
3347
+ {
3348
+ "epoch": 0.76,
3349
+ "learning_rate": 1e-05,
3350
+ "loss": 1.1607,
3351
+ "step": 557
3352
+ },
3353
+ {
3354
+ "epoch": 0.76,
3355
+ "learning_rate": 1e-05,
3356
+ "loss": 1.2649,
3357
+ "step": 558
3358
+ },
3359
+ {
3360
+ "epoch": 0.77,
3361
+ "learning_rate": 1e-05,
3362
+ "loss": 1.1959,
3363
+ "step": 559
3364
+ },
3365
+ {
3366
+ "epoch": 0.77,
3367
+ "learning_rate": 1e-05,
3368
+ "loss": 1.3358,
3369
+ "step": 560
3370
+ },
3371
+ {
3372
+ "epoch": 0.77,
3373
+ "learning_rate": 1e-05,
3374
+ "loss": 1.2121,
3375
+ "step": 561
3376
+ },
3377
+ {
3378
+ "epoch": 0.77,
3379
+ "learning_rate": 1e-05,
3380
+ "loss": 1.1291,
3381
+ "step": 562
3382
+ },
3383
+ {
3384
+ "epoch": 0.77,
3385
+ "learning_rate": 1e-05,
3386
+ "loss": 1.1961,
3387
+ "step": 563
3388
+ },
3389
+ {
3390
+ "epoch": 0.77,
3391
+ "learning_rate": 1e-05,
3392
+ "loss": 1.2156,
3393
+ "step": 564
3394
+ },
3395
+ {
3396
+ "epoch": 0.77,
3397
+ "learning_rate": 1e-05,
3398
+ "loss": 1.1001,
3399
+ "step": 565
3400
+ },
3401
+ {
3402
+ "epoch": 0.78,
3403
+ "learning_rate": 1e-05,
3404
+ "loss": 1.2442,
3405
+ "step": 566
3406
+ },
3407
+ {
3408
+ "epoch": 0.78,
3409
+ "learning_rate": 1e-05,
3410
+ "loss": 1.3107,
3411
+ "step": 567
3412
+ },
3413
+ {
3414
+ "epoch": 0.78,
3415
+ "learning_rate": 1e-05,
3416
+ "loss": 1.1548,
3417
+ "step": 568
3418
+ },
3419
+ {
3420
+ "epoch": 0.78,
3421
+ "learning_rate": 1e-05,
3422
+ "loss": 1.3009,
3423
+ "step": 569
3424
+ },
3425
+ {
3426
+ "epoch": 0.78,
3427
+ "learning_rate": 1e-05,
3428
+ "loss": 1.2116,
3429
+ "step": 570
3430
+ },
3431
+ {
3432
+ "epoch": 0.78,
3433
+ "learning_rate": 1e-05,
3434
+ "loss": 1.1632,
3435
+ "step": 571
3436
+ },
3437
+ {
3438
+ "epoch": 0.78,
3439
+ "learning_rate": 1e-05,
3440
+ "loss": 1.2011,
3441
+ "step": 572
3442
+ },
3443
+ {
3444
+ "epoch": 0.79,
3445
+ "learning_rate": 1e-05,
3446
+ "loss": 0.9512,
3447
+ "step": 573
3448
+ },
3449
+ {
3450
+ "epoch": 0.79,
3451
+ "learning_rate": 1e-05,
3452
+ "loss": 1.1912,
3453
+ "step": 574
3454
+ },
3455
+ {
3456
+ "epoch": 0.79,
3457
+ "learning_rate": 1e-05,
3458
+ "loss": 1.0888,
3459
+ "step": 575
3460
+ },
3461
+ {
3462
+ "epoch": 0.79,
3463
+ "learning_rate": 1e-05,
3464
+ "loss": 1.2705,
3465
+ "step": 576
3466
+ },
3467
+ {
3468
+ "epoch": 0.79,
3469
+ "learning_rate": 1e-05,
3470
+ "loss": 1.1161,
3471
+ "step": 577
3472
+ },
3473
+ {
3474
+ "epoch": 0.79,
3475
+ "learning_rate": 1e-05,
3476
+ "loss": 1.1722,
3477
+ "step": 578
3478
+ },
3479
+ {
3480
+ "epoch": 0.79,
3481
+ "learning_rate": 1e-05,
3482
+ "loss": 1.3802,
3483
+ "step": 579
3484
+ },
3485
+ {
3486
+ "epoch": 0.8,
3487
+ "learning_rate": 1e-05,
3488
+ "loss": 1.0887,
3489
+ "step": 580
3490
+ },
3491
+ {
3492
+ "epoch": 0.8,
3493
+ "learning_rate": 1e-05,
3494
+ "loss": 1.268,
3495
+ "step": 581
3496
+ },
3497
+ {
3498
+ "epoch": 0.8,
3499
+ "learning_rate": 1e-05,
3500
+ "loss": 0.8627,
3501
+ "step": 582
3502
+ },
3503
+ {
3504
+ "epoch": 0.8,
3505
+ "learning_rate": 1e-05,
3506
+ "loss": 1.2565,
3507
+ "step": 583
3508
+ },
3509
+ {
3510
+ "epoch": 0.8,
3511
+ "learning_rate": 1e-05,
3512
+ "loss": 1.1433,
3513
+ "step": 584
3514
+ },
3515
+ {
3516
+ "epoch": 0.8,
3517
+ "learning_rate": 1e-05,
3518
+ "loss": 1.2263,
3519
+ "step": 585
3520
+ },
3521
+ {
3522
+ "epoch": 0.8,
3523
+ "learning_rate": 1e-05,
3524
+ "loss": 1.1606,
3525
+ "step": 586
3526
+ },
3527
+ {
3528
+ "epoch": 0.8,
3529
+ "learning_rate": 1e-05,
3530
+ "loss": 1.2557,
3531
+ "step": 587
3532
+ },
3533
+ {
3534
+ "epoch": 0.81,
3535
+ "learning_rate": 1e-05,
3536
+ "loss": 1.2018,
3537
+ "step": 588
3538
+ },
3539
+ {
3540
+ "epoch": 0.81,
3541
+ "learning_rate": 1e-05,
3542
+ "loss": 1.1545,
3543
+ "step": 589
3544
+ },
3545
+ {
3546
+ "epoch": 0.81,
3547
+ "learning_rate": 1e-05,
3548
+ "loss": 1.0917,
3549
+ "step": 590
3550
+ },
3551
+ {
3552
+ "epoch": 0.81,
3553
+ "learning_rate": 1e-05,
3554
+ "loss": 1.1935,
3555
+ "step": 591
3556
+ },
3557
+ {
3558
+ "epoch": 0.81,
3559
+ "learning_rate": 1e-05,
3560
+ "loss": 1.1721,
3561
+ "step": 592
3562
+ },
3563
+ {
3564
+ "epoch": 0.81,
3565
+ "learning_rate": 1e-05,
3566
+ "loss": 1.4243,
3567
+ "step": 593
3568
+ },
3569
+ {
3570
+ "epoch": 0.81,
3571
+ "learning_rate": 1e-05,
3572
+ "loss": 0.9393,
3573
+ "step": 594
3574
+ },
3575
+ {
3576
+ "epoch": 0.82,
3577
+ "learning_rate": 1e-05,
3578
+ "loss": 1.2742,
3579
+ "step": 595
3580
+ },
3581
+ {
3582
+ "epoch": 0.82,
3583
+ "learning_rate": 1e-05,
3584
+ "loss": 1.0141,
3585
+ "step": 596
3586
+ },
3587
+ {
3588
+ "epoch": 0.82,
3589
+ "learning_rate": 1e-05,
3590
+ "loss": 0.9228,
3591
+ "step": 597
3592
+ },
3593
+ {
3594
+ "epoch": 0.82,
3595
+ "learning_rate": 1e-05,
3596
+ "loss": 1.2762,
3597
+ "step": 598
3598
+ },
3599
+ {
3600
+ "epoch": 0.82,
3601
+ "learning_rate": 1e-05,
3602
+ "loss": 1.1166,
3603
+ "step": 599
3604
+ },
3605
+ {
3606
+ "epoch": 0.82,
3607
+ "learning_rate": 1e-05,
3608
+ "loss": 0.9603,
3609
+ "step": 600
3610
+ },
3611
+ {
3612
+ "epoch": 0.82,
3613
+ "learning_rate": 1e-05,
3614
+ "loss": 1.1453,
3615
+ "step": 601
3616
+ },
3617
+ {
3618
+ "epoch": 0.83,
3619
+ "learning_rate": 1e-05,
3620
+ "loss": 1.0849,
3621
+ "step": 602
3622
+ },
3623
+ {
3624
+ "epoch": 0.83,
3625
+ "learning_rate": 1e-05,
3626
+ "loss": 1.288,
3627
+ "step": 603
3628
+ },
3629
+ {
3630
+ "epoch": 0.83,
3631
+ "learning_rate": 1e-05,
3632
+ "loss": 1.0641,
3633
+ "step": 604
3634
+ },
3635
+ {
3636
+ "epoch": 0.83,
3637
+ "learning_rate": 1e-05,
3638
+ "loss": 1.2234,
3639
+ "step": 605
3640
+ },
3641
+ {
3642
+ "epoch": 0.83,
3643
+ "learning_rate": 1e-05,
3644
+ "loss": 1.2774,
3645
+ "step": 606
3646
+ },
3647
+ {
3648
+ "epoch": 0.83,
3649
+ "learning_rate": 1e-05,
3650
+ "loss": 1.1161,
3651
+ "step": 607
3652
+ },
3653
+ {
3654
+ "epoch": 0.83,
3655
+ "learning_rate": 1e-05,
3656
+ "loss": 1.4146,
3657
+ "step": 608
3658
+ },
3659
+ {
3660
+ "epoch": 0.83,
3661
+ "learning_rate": 1e-05,
3662
+ "loss": 1.1844,
3663
+ "step": 609
3664
+ },
3665
+ {
3666
+ "epoch": 0.84,
3667
+ "learning_rate": 1e-05,
3668
+ "loss": 1.3707,
3669
+ "step": 610
3670
+ },
3671
+ {
3672
+ "epoch": 0.84,
3673
+ "learning_rate": 1e-05,
3674
+ "loss": 1.3002,
3675
+ "step": 611
3676
+ },
3677
+ {
3678
+ "epoch": 0.84,
3679
+ "learning_rate": 1e-05,
3680
+ "loss": 1.2849,
3681
+ "step": 612
3682
+ },
3683
+ {
3684
+ "epoch": 0.84,
3685
+ "learning_rate": 1e-05,
3686
+ "loss": 1.0489,
3687
+ "step": 613
3688
+ },
3689
+ {
3690
+ "epoch": 0.84,
3691
+ "learning_rate": 1e-05,
3692
+ "loss": 1.1897,
3693
+ "step": 614
3694
+ },
3695
+ {
3696
+ "epoch": 0.84,
3697
+ "learning_rate": 1e-05,
3698
+ "loss": 1.09,
3699
+ "step": 615
3700
+ },
3701
+ {
3702
+ "epoch": 0.84,
3703
+ "learning_rate": 1e-05,
3704
+ "loss": 1.1779,
3705
+ "step": 616
3706
+ },
3707
+ {
3708
+ "epoch": 0.85,
3709
+ "learning_rate": 1e-05,
3710
+ "loss": 1.3649,
3711
+ "step": 617
3712
+ },
3713
+ {
3714
+ "epoch": 0.85,
3715
+ "learning_rate": 1e-05,
3716
+ "loss": 1.1049,
3717
+ "step": 618
3718
+ },
3719
+ {
3720
+ "epoch": 0.85,
3721
+ "learning_rate": 1e-05,
3722
+ "loss": 1.257,
3723
+ "step": 619
3724
+ },
3725
+ {
3726
+ "epoch": 0.85,
3727
+ "learning_rate": 1e-05,
3728
+ "loss": 1.273,
3729
+ "step": 620
3730
+ },
3731
+ {
3732
+ "epoch": 0.85,
3733
+ "learning_rate": 1e-05,
3734
+ "loss": 0.8941,
3735
+ "step": 621
3736
+ },
3737
+ {
3738
+ "epoch": 0.85,
3739
+ "learning_rate": 1e-05,
3740
+ "loss": 1.1427,
3741
+ "step": 622
3742
+ },
3743
+ {
3744
+ "epoch": 0.85,
3745
+ "learning_rate": 1e-05,
3746
+ "loss": 1.1603,
3747
+ "step": 623
3748
+ },
3749
+ {
3750
+ "epoch": 0.86,
3751
+ "learning_rate": 1e-05,
3752
+ "loss": 1.1058,
3753
+ "step": 624
3754
+ },
3755
+ {
3756
+ "epoch": 0.86,
3757
+ "learning_rate": 1e-05,
3758
+ "loss": 1.136,
3759
+ "step": 625
3760
+ },
3761
+ {
3762
+ "epoch": 0.86,
3763
+ "learning_rate": 1e-05,
3764
+ "loss": 1.3001,
3765
+ "step": 626
3766
+ },
3767
+ {
3768
+ "epoch": 0.86,
3769
+ "learning_rate": 1e-05,
3770
+ "loss": 0.8937,
3771
+ "step": 627
3772
+ },
3773
+ {
3774
+ "epoch": 0.86,
3775
+ "learning_rate": 1e-05,
3776
+ "loss": 1.2081,
3777
+ "step": 628
3778
+ },
3779
+ {
3780
+ "epoch": 0.86,
3781
+ "learning_rate": 1e-05,
3782
+ "loss": 1.3189,
3783
+ "step": 629
3784
+ },
3785
+ {
3786
+ "epoch": 0.86,
3787
+ "learning_rate": 1e-05,
3788
+ "loss": 1.082,
3789
+ "step": 630
3790
+ },
3791
+ {
3792
+ "epoch": 0.86,
3793
+ "learning_rate": 1e-05,
3794
+ "loss": 1.0969,
3795
+ "step": 631
3796
+ },
3797
+ {
3798
+ "epoch": 0.87,
3799
+ "learning_rate": 1e-05,
3800
+ "loss": 1.2862,
3801
+ "step": 632
3802
+ },
3803
+ {
3804
+ "epoch": 0.87,
3805
+ "learning_rate": 1e-05,
3806
+ "loss": 1.0158,
3807
+ "step": 633
3808
+ },
3809
+ {
3810
+ "epoch": 0.87,
3811
+ "learning_rate": 1e-05,
3812
+ "loss": 1.1292,
3813
+ "step": 634
3814
+ },
3815
+ {
3816
+ "epoch": 0.87,
3817
+ "learning_rate": 1e-05,
3818
+ "loss": 1.1611,
3819
+ "step": 635
3820
+ },
3821
+ {
3822
+ "epoch": 0.87,
3823
+ "learning_rate": 1e-05,
3824
+ "loss": 1.0885,
3825
+ "step": 636
3826
+ },
3827
+ {
3828
+ "epoch": 0.87,
3829
+ "learning_rate": 1e-05,
3830
+ "loss": 1.0353,
3831
+ "step": 637
3832
+ },
3833
+ {
3834
+ "epoch": 0.87,
3835
+ "learning_rate": 1e-05,
3836
+ "loss": 1.5197,
3837
+ "step": 638
3838
+ },
3839
+ {
3840
+ "epoch": 0.88,
3841
+ "learning_rate": 1e-05,
3842
+ "loss": 1.2418,
3843
+ "step": 639
3844
+ },
3845
+ {
3846
+ "epoch": 0.88,
3847
+ "learning_rate": 1e-05,
3848
+ "loss": 1.0245,
3849
+ "step": 640
3850
+ },
3851
+ {
3852
+ "epoch": 0.88,
3853
+ "learning_rate": 1e-05,
3854
+ "loss": 0.9594,
3855
+ "step": 641
3856
+ },
3857
+ {
3858
+ "epoch": 0.88,
3859
+ "learning_rate": 1e-05,
3860
+ "loss": 1.2253,
3861
+ "step": 642
3862
+ },
3863
+ {
3864
+ "epoch": 0.88,
3865
+ "learning_rate": 1e-05,
3866
+ "loss": 1.1019,
3867
+ "step": 643
3868
+ },
3869
+ {
3870
+ "epoch": 0.88,
3871
+ "learning_rate": 1e-05,
3872
+ "loss": 1.0199,
3873
+ "step": 644
3874
+ },
3875
+ {
3876
+ "epoch": 0.88,
3877
+ "learning_rate": 1e-05,
3878
+ "loss": 0.9892,
3879
+ "step": 645
3880
+ },
3881
+ {
3882
+ "epoch": 0.89,
3883
+ "learning_rate": 1e-05,
3884
+ "loss": 1.0112,
3885
+ "step": 646
3886
+ },
3887
+ {
3888
+ "epoch": 0.89,
3889
+ "learning_rate": 1e-05,
3890
+ "loss": 0.9136,
3891
+ "step": 647
3892
+ },
3893
+ {
3894
+ "epoch": 0.89,
3895
+ "learning_rate": 1e-05,
3896
+ "loss": 1.1581,
3897
+ "step": 648
3898
+ },
3899
+ {
3900
+ "epoch": 0.89,
3901
+ "learning_rate": 1e-05,
3902
+ "loss": 1.1571,
3903
+ "step": 649
3904
+ },
3905
+ {
3906
+ "epoch": 0.89,
3907
+ "learning_rate": 1e-05,
3908
+ "loss": 1.5382,
3909
+ "step": 650
3910
+ },
3911
+ {
3912
+ "epoch": 0.89,
3913
+ "learning_rate": 1e-05,
3914
+ "loss": 1.0162,
3915
+ "step": 651
3916
+ },
3917
+ {
3918
+ "epoch": 0.89,
3919
+ "learning_rate": 1e-05,
3920
+ "loss": 1.1514,
3921
+ "step": 652
3922
+ },
3923
+ {
3924
+ "epoch": 0.9,
3925
+ "learning_rate": 1e-05,
3926
+ "loss": 1.2793,
3927
+ "step": 653
3928
+ },
3929
+ {
3930
+ "epoch": 0.9,
3931
+ "learning_rate": 1e-05,
3932
+ "loss": 1.1468,
3933
+ "step": 654
3934
+ },
3935
+ {
3936
+ "epoch": 0.9,
3937
+ "learning_rate": 1e-05,
3938
+ "loss": 1.4307,
3939
+ "step": 655
3940
+ },
3941
+ {
3942
+ "epoch": 0.9,
3943
+ "learning_rate": 1e-05,
3944
+ "loss": 1.0331,
3945
+ "step": 656
3946
+ },
3947
+ {
3948
+ "epoch": 0.9,
3949
+ "learning_rate": 1e-05,
3950
+ "loss": 1.3126,
3951
+ "step": 657
3952
+ },
3953
+ {
3954
+ "epoch": 0.9,
3955
+ "learning_rate": 1e-05,
3956
+ "loss": 1.2361,
3957
+ "step": 658
3958
+ },
3959
+ {
3960
+ "epoch": 0.9,
3961
+ "learning_rate": 1e-05,
3962
+ "loss": 1.1493,
3963
+ "step": 659
3964
+ },
3965
+ {
3966
+ "epoch": 0.9,
3967
+ "learning_rate": 1e-05,
3968
+ "loss": 0.9919,
3969
+ "step": 660
3970
+ },
3971
+ {
3972
+ "epoch": 0.91,
3973
+ "learning_rate": 1e-05,
3974
+ "loss": 1.3145,
3975
+ "step": 661
3976
+ },
3977
+ {
3978
+ "epoch": 0.91,
3979
+ "learning_rate": 1e-05,
3980
+ "loss": 1.0194,
3981
+ "step": 662
3982
+ },
3983
+ {
3984
+ "epoch": 0.91,
3985
+ "learning_rate": 1e-05,
3986
+ "loss": 1.2119,
3987
+ "step": 663
3988
+ },
3989
+ {
3990
+ "epoch": 0.91,
3991
+ "learning_rate": 1e-05,
3992
+ "loss": 1.4123,
3993
+ "step": 664
3994
+ },
3995
+ {
3996
+ "epoch": 0.91,
3997
+ "learning_rate": 1e-05,
3998
+ "loss": 1.4708,
3999
+ "step": 665
4000
+ },
4001
+ {
4002
+ "epoch": 0.91,
4003
+ "learning_rate": 1e-05,
4004
+ "loss": 0.9285,
4005
+ "step": 666
4006
+ },
4007
+ {
4008
+ "epoch": 0.91,
4009
+ "learning_rate": 1e-05,
4010
+ "loss": 1.2336,
4011
+ "step": 667
4012
+ },
4013
+ {
4014
+ "epoch": 0.92,
4015
+ "learning_rate": 1e-05,
4016
+ "loss": 1.2068,
4017
+ "step": 668
4018
+ },
4019
+ {
4020
+ "epoch": 0.92,
4021
+ "learning_rate": 1e-05,
4022
+ "loss": 1.1762,
4023
+ "step": 669
4024
+ },
4025
+ {
4026
+ "epoch": 0.92,
4027
+ "learning_rate": 1e-05,
4028
+ "loss": 1.0675,
4029
+ "step": 670
4030
+ },
4031
+ {
4032
+ "epoch": 0.92,
4033
+ "learning_rate": 1e-05,
4034
+ "loss": 1.1717,
4035
+ "step": 671
4036
+ },
4037
+ {
4038
+ "epoch": 0.92,
4039
+ "learning_rate": 1e-05,
4040
+ "loss": 1.2715,
4041
+ "step": 672
4042
+ },
4043
+ {
4044
+ "epoch": 0.92,
4045
+ "learning_rate": 1e-05,
4046
+ "loss": 1.2124,
4047
+ "step": 673
4048
+ },
4049
+ {
4050
+ "epoch": 0.92,
4051
+ "learning_rate": 1e-05,
4052
+ "loss": 0.9171,
4053
+ "step": 674
4054
+ },
4055
+ {
4056
+ "epoch": 0.93,
4057
+ "learning_rate": 1e-05,
4058
+ "loss": 1.1485,
4059
+ "step": 675
4060
+ },
4061
+ {
4062
+ "epoch": 0.93,
4063
+ "learning_rate": 1e-05,
4064
+ "loss": 1.065,
4065
+ "step": 676
4066
+ },
4067
+ {
4068
+ "epoch": 0.93,
4069
+ "learning_rate": 1e-05,
4070
+ "loss": 0.9832,
4071
+ "step": 677
4072
+ },
4073
+ {
4074
+ "epoch": 0.93,
4075
+ "learning_rate": 1e-05,
4076
+ "loss": 1.1978,
4077
+ "step": 678
4078
+ },
4079
+ {
4080
+ "epoch": 0.93,
4081
+ "learning_rate": 1e-05,
4082
+ "loss": 1.2763,
4083
+ "step": 679
4084
+ },
4085
+ {
4086
+ "epoch": 0.93,
4087
+ "learning_rate": 1e-05,
4088
+ "loss": 1.3615,
4089
+ "step": 680
4090
+ },
4091
+ {
4092
+ "epoch": 0.93,
4093
+ "learning_rate": 1e-05,
4094
+ "loss": 1.0458,
4095
+ "step": 681
4096
+ },
4097
+ {
4098
+ "epoch": 0.93,
4099
+ "learning_rate": 1e-05,
4100
+ "loss": 1.0635,
4101
+ "step": 682
4102
+ },
4103
+ {
4104
+ "epoch": 0.94,
4105
+ "learning_rate": 1e-05,
4106
+ "loss": 1.1269,
4107
+ "step": 683
4108
+ },
4109
+ {
4110
+ "epoch": 0.94,
4111
+ "learning_rate": 1e-05,
4112
+ "loss": 1.0314,
4113
+ "step": 684
4114
+ },
4115
+ {
4116
+ "epoch": 0.94,
4117
+ "learning_rate": 1e-05,
4118
+ "loss": 1.0545,
4119
+ "step": 685
4120
+ },
4121
+ {
4122
+ "epoch": 0.94,
4123
+ "learning_rate": 1e-05,
4124
+ "loss": 1.2244,
4125
+ "step": 686
4126
+ },
4127
+ {
4128
+ "epoch": 0.94,
4129
+ "learning_rate": 1e-05,
4130
+ "loss": 1.2855,
4131
+ "step": 687
4132
+ },
4133
+ {
4134
+ "epoch": 0.94,
4135
+ "learning_rate": 1e-05,
4136
+ "loss": 1.2325,
4137
+ "step": 688
4138
+ },
4139
+ {
4140
+ "epoch": 0.94,
4141
+ "learning_rate": 1e-05,
4142
+ "loss": 0.7963,
4143
+ "step": 689
4144
+ },
4145
+ {
4146
+ "epoch": 0.95,
4147
+ "learning_rate": 1e-05,
4148
+ "loss": 0.9491,
4149
+ "step": 690
4150
+ },
4151
+ {
4152
+ "epoch": 0.95,
4153
+ "learning_rate": 1e-05,
4154
+ "loss": 1.0848,
4155
+ "step": 691
4156
+ },
4157
+ {
4158
+ "epoch": 0.95,
4159
+ "learning_rate": 1e-05,
4160
+ "loss": 1.0316,
4161
+ "step": 692
4162
+ },
4163
+ {
4164
+ "epoch": 0.95,
4165
+ "learning_rate": 1e-05,
4166
+ "loss": 1.2156,
4167
+ "step": 693
4168
+ },
4169
+ {
4170
+ "epoch": 0.95,
4171
+ "learning_rate": 1e-05,
4172
+ "loss": 0.9738,
4173
+ "step": 694
4174
+ },
4175
+ {
4176
+ "epoch": 0.95,
4177
+ "learning_rate": 1e-05,
4178
+ "loss": 1.2488,
4179
+ "step": 695
4180
+ },
4181
+ {
4182
+ "epoch": 0.95,
4183
+ "learning_rate": 1e-05,
4184
+ "loss": 1.0594,
4185
+ "step": 696
4186
+ },
4187
+ {
4188
+ "epoch": 0.96,
4189
+ "learning_rate": 1e-05,
4190
+ "loss": 1.2164,
4191
+ "step": 697
4192
+ },
4193
+ {
4194
+ "epoch": 0.96,
4195
+ "learning_rate": 1e-05,
4196
+ "loss": 0.9978,
4197
+ "step": 698
4198
+ },
4199
+ {
4200
+ "epoch": 0.96,
4201
+ "learning_rate": 1e-05,
4202
+ "loss": 1.226,
4203
+ "step": 699
4204
+ },
4205
+ {
4206
+ "epoch": 0.96,
4207
+ "learning_rate": 1e-05,
4208
+ "loss": 1.1203,
4209
+ "step": 700
4210
+ },
4211
+ {
4212
+ "epoch": 0.96,
4213
+ "learning_rate": 1e-05,
4214
+ "loss": 1.1197,
4215
+ "step": 701
4216
+ },
4217
+ {
4218
+ "epoch": 0.96,
4219
+ "learning_rate": 1e-05,
4220
+ "loss": 1.1775,
4221
+ "step": 702
4222
+ },
4223
+ {
4224
+ "epoch": 0.96,
4225
+ "learning_rate": 1e-05,
4226
+ "loss": 1.2717,
4227
+ "step": 703
4228
+ },
4229
+ {
4230
+ "epoch": 0.97,
4231
+ "learning_rate": 1e-05,
4232
+ "loss": 1.0475,
4233
+ "step": 704
4234
+ },
4235
+ {
4236
+ "epoch": 0.97,
4237
+ "learning_rate": 1e-05,
4238
+ "loss": 0.959,
4239
+ "step": 705
4240
+ },
4241
+ {
4242
+ "epoch": 0.97,
4243
+ "learning_rate": 1e-05,
4244
+ "loss": 1.2826,
4245
+ "step": 706
4246
+ },
4247
+ {
4248
+ "epoch": 0.97,
4249
+ "learning_rate": 1e-05,
4250
+ "loss": 1.2405,
4251
+ "step": 707
4252
+ },
4253
+ {
4254
+ "epoch": 0.97,
4255
+ "learning_rate": 1e-05,
4256
+ "loss": 1.3496,
4257
+ "step": 708
4258
+ },
4259
+ {
4260
+ "epoch": 0.97,
4261
+ "learning_rate": 1e-05,
4262
+ "loss": 1.0772,
4263
+ "step": 709
4264
+ },
4265
+ {
4266
+ "epoch": 0.97,
4267
+ "learning_rate": 1e-05,
4268
+ "loss": 1.2431,
4269
+ "step": 710
4270
+ },
4271
+ {
4272
+ "epoch": 0.97,
4273
+ "learning_rate": 1e-05,
4274
+ "loss": 1.0681,
4275
+ "step": 711
4276
+ },
4277
+ {
4278
+ "epoch": 0.98,
4279
+ "learning_rate": 1e-05,
4280
+ "loss": 1.4682,
4281
+ "step": 712
4282
+ },
4283
+ {
4284
+ "epoch": 0.98,
4285
+ "learning_rate": 1e-05,
4286
+ "loss": 1.1159,
4287
+ "step": 713
4288
+ },
4289
+ {
4290
+ "epoch": 0.98,
4291
+ "learning_rate": 1e-05,
4292
+ "loss": 1.0574,
4293
+ "step": 714
4294
+ },
4295
+ {
4296
+ "epoch": 0.98,
4297
+ "learning_rate": 1e-05,
4298
+ "loss": 1.0319,
4299
+ "step": 715
4300
+ },
4301
+ {
4302
+ "epoch": 0.98,
4303
+ "learning_rate": 1e-05,
4304
+ "loss": 0.9838,
4305
+ "step": 716
4306
+ },
4307
+ {
4308
+ "epoch": 0.98,
4309
+ "learning_rate": 1e-05,
4310
+ "loss": 1.5624,
4311
+ "step": 717
4312
+ },
4313
+ {
4314
+ "epoch": 0.98,
4315
+ "learning_rate": 1e-05,
4316
+ "loss": 0.9486,
4317
+ "step": 718
4318
+ },
4319
+ {
4320
+ "epoch": 0.99,
4321
+ "learning_rate": 1e-05,
4322
+ "loss": 0.9797,
4323
+ "step": 719
4324
+ },
4325
+ {
4326
+ "epoch": 0.99,
4327
+ "learning_rate": 1e-05,
4328
+ "loss": 1.35,
4329
+ "step": 720
4330
+ },
4331
+ {
4332
+ "epoch": 0.99,
4333
+ "learning_rate": 1e-05,
4334
+ "loss": 1.0952,
4335
+ "step": 721
4336
+ },
4337
+ {
4338
+ "epoch": 0.99,
4339
+ "learning_rate": 1e-05,
4340
+ "loss": 1.1613,
4341
+ "step": 722
4342
+ },
4343
+ {
4344
+ "epoch": 0.99,
4345
+ "learning_rate": 1e-05,
4346
+ "loss": 1.2871,
4347
+ "step": 723
4348
+ },
4349
+ {
4350
+ "epoch": 0.99,
4351
+ "learning_rate": 1e-05,
4352
+ "loss": 1.1193,
4353
+ "step": 724
4354
+ },
4355
+ {
4356
+ "epoch": 0.99,
4357
+ "learning_rate": 1e-05,
4358
+ "loss": 1.1311,
4359
+ "step": 725
4360
+ },
4361
+ {
4362
+ "epoch": 1.0,
4363
+ "learning_rate": 1e-05,
4364
+ "loss": 1.1926,
4365
+ "step": 726
4366
+ },
4367
+ {
4368
+ "epoch": 1.0,
4369
+ "learning_rate": 1e-05,
4370
+ "loss": 1.4396,
4371
+ "step": 727
4372
+ },
4373
+ {
4374
+ "epoch": 1.0,
4375
+ "learning_rate": 1e-05,
4376
+ "loss": 1.0607,
4377
+ "step": 728
4378
+ },
4379
+ {
4380
+ "epoch": 1.0,
4381
+ "learning_rate": 1e-05,
4382
+ "loss": 1.2212,
4383
+ "step": 729
4384
+ },
4385
+ {
4386
+ "epoch": 1.0,
4387
+ "step": 729,
4388
+ "total_flos": 17757294821376.0,
4389
+ "train_loss": 1.4406553773395974,
4390
+ "train_runtime": 51387.1617,
4391
+ "train_samples_per_second": 0.454,
4392
+ "train_steps_per_second": 0.014
4393
+ }
4394
+ ],
4395
+ "logging_steps": 1.0,
4396
+ "max_steps": 729,
4397
+ "num_train_epochs": 1,
4398
+ "save_steps": 1000,
4399
+ "total_flos": 17757294821376.0,
4400
+ "trial_name": null,
4401
+ "trial_params": null
4402
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10531b27617bc2961885cc7986a5aed87ecfc4fa02bf5fe98bb34049536ebf04
3
+ size 6776