File size: 4,568 Bytes
c705d55
 
 
 
 
 
 
39d8c02
c705d55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
feffb39
c705d55
 
 
37b4b28
c705d55
 
 
37b4b28
c705d55
 
 
 
 
 
 
37b4b28
 
 
 
c705d55
 
 
 
 
 
 
 
 
 
 
37b4b28
c705d55
 
 
37b4b28
 
 
28f06cd
c705d55
 
 
37b4b28
c705d55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37b4b28
c705d55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
language: "en"
thumbnail:
tags:
- Source Separation
- Speech Separation
- Audio Source Separation
- Libri4Mix
- SepFormer
- Transformer 
- audio-to-audio 
- audio-source-separation
- speechbrain
license: "apache-2.0"
datasets:
- Libri3Mix
metrics:
- SI-SNRi
- SDRi

---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# SepFormer trained on Libri4Mix with 48khz sample rate

This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2) 
model, implemented with SpeechBrain, and pretrained on Libri3Mix dataset. For a better experience we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The model performance is 8.88 dB SI-SNRi on the test set of Libri4Mix 48k dataset.

| Release | Test-Set SI-SNRi | Test-Set SDRi |
|:-------------:|:--------------:|:--------------:|
| 29-01-24 | 8.88dB | 9.44dB |


## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
!git clone https://github.com/hahmadraza/speechbrain_48k.git
%cd speechbrain_48k
!pip install -r requirements.txt
!pip install --editable .
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Perform source separation on your own audio file

```python
from speechbrain.pretrained import SepformerSeparation as separator
import torchaudio

model = separator.from_hparams(source="hahmadraz/sepformer-libri4mix", savedir='pretrained_models/sepformer-libri4mix-48k/')

est_sources = model.separate_file(path='speechbrain/sepformer-wsj03mix/test_mixture_3spks.wav') 

torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 48000)
torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 48000)
torchaudio.save("source3hat.wav", est_sources[:, :, 2].detach().cpu(), 48000)
torchaudio.save("source4hat.wav", est_sources[:, :, 3].detach().cpu(), 48000)

```

The system expects input recordings sampled at 48kHz (single channel).
If your signal has a different sample rate, resample it (e.g, using torchaudio or sox) before using the interface.

### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain (fc2eabb7).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```
cd  recipes/LibriMix/separation
python train.py hparams/sepformer.yaml --data_folder=your_data_folder
```
Note: change num_spks to 4 in the yaml file.


You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1DN49LtAs6cq1X0jZ8tRMlh2Pj6AecClz).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

#### Referencing SpeechBrain

```bibtex
@misc{speechbrain,
  title={{SpeechBrain}: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  note={arXiv:2106.04624}
}
```


#### Referencing SepFormer
```bibtex
@inproceedings{subakan2021attention,
      title={Attention is All You Need in Speech Separation}, 
      author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
      year={2021},
      booktitle={ICASSP 2021}
}

@misc{subakan2022sepformer
  author = {Subakan, Cem and Ravanelli, Mirco and Cornell, Samuele and Grondin, Francois and Bronzi, Mirko},
  title = {On Using Transformers for Speech-Separation},
  year = {2022},
  copyright = {arXiv.org perpetual, non-exclusive license}
}

```

# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/