--- license: mit base_model: xlnet-base-cased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: UIT-VSFC-XLNet-CLSModel-v2 results: [] --- # UIT-VSFC-XLNet-CLSModel-v2 This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3194 - Accuracy: 0.8880 - F1: 0.6798 - Precision: 0.7793 - Recall: 0.6634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 357 | 0.3898 | 0.875 | 0.6225 | 0.7846 | 0.6229 | | 0.4955 | 2.0 | 714 | 0.3194 | 0.8880 | 0.6798 | 0.7793 | 0.6634 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1