haijian06 commited on
Commit
a7fb153
1 Parent(s): 47f3cbb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -7
README.md CHANGED
@@ -34,22 +34,50 @@ Below is a simple example demonstrating how to use the model for solving a mathe
34
 
35
  ```python
36
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
37
 
38
  # Load the tokenizer and model
39
  tokenizer = AutoTokenizer.from_pretrained("haijian06/Yi-1.5-6B-Chat-Math")
40
- model = AutoModelForCausalLM.from_pretrained("haijian06/Yi-1.5-6B-Chat-Math")
41
 
42
- # Input mathematical problem
43
- input_text = "Solve the equation x^2 - 5x + 6 = 0"
44
- inputs = tokenizer(input_text, return_tensors="pt")
45
 
46
- # Generate the solution
47
- outputs = model.generate(**inputs)
48
- answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
 
 
 
49
 
 
50
  print(answer)
51
  ```
 
 
 
 
 
 
 
 
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  ## Contributing
54
 
55
  Contributions are welcome! Whether you have suggestions for improvements, bug reports, or want to contribute code, feel free to open an issue or submit a pull request on GitHub.
 
34
 
35
  ```python
36
  from transformers import AutoModelForCausalLM, AutoTokenizer
37
+ import torch
38
 
39
  # Load the tokenizer and model
40
  tokenizer = AutoTokenizer.from_pretrained("haijian06/Yi-1.5-6B-Chat-Math")
41
+ model = AutoModelForCausalLM.from_pretrained("haijian06/Yi-1.5-6B-Chat-Math", torch_dtype=torch.float16, device_map="auto")
42
 
43
+ input_text = "Solve the equation x^2 - 5x + 6 = 0 Let's solve this step-by-step:"
 
 
44
 
45
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
46
+
47
+ with torch.no_grad():
48
+ outputs = model.generate(
49
+ **inputs,
50
+ max_new_tokens=200,
51
+ do_sample=True,
52
+ temperature=0.7,
53
+ top_p=0.95,
54
+ )
55
 
56
+ answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
57
  print(answer)
58
  ```
59
+ ```
60
+ Solve the equation x^2 - 5 x + 6 = 0 Let's solve this step-by-step:
61
+
62
+ Step 1: Factor the equation
63
+ The equation can be factored as follows:
64
+
65
+ x^2 - 5x + 6 = 0
66
+ (x - 2)(x - 3) = 0
67
 
68
+ Step 2: Apply the zero product property
69
+ If the product of two numbers is zero, then at least one of the numbers must be zero.
70
+
71
+ So, either (x - 2) = 0 or (x - 3) = 0
72
+
73
+ Step 3: Solve for x
74
+ If (x - 2) = 0, then x = 2
75
+ If (x - 3) = 0, then x = 3
76
+
77
+ So, the solutions are x = 2 and x = 3.
78
+
79
+ Answer: 2, 3
80
+ ```
81
  ## Contributing
82
 
83
  Contributions are welcome! Whether you have suggestions for improvements, bug reports, or want to contribute code, feel free to open an issue or submit a pull request on GitHub.