File size: 3,847 Bytes
ba6c6b8
 
 
 
 
 
 
 
 
 
 
 
 
a897ff6
 
 
 
ba6c6b8
 
 
 
 
 
 
a897ff6
ba6c6b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a897ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba6c6b8
 
 
 
 
 
a897ff6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-base-azsci-topics
  results: []
datasets:
- hajili/azsci_topics
language:
- az
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-azsci-topics

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on [azsci_topics](https://huggingface.co/datasets/hajili/azsci_topics) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5075
- Precision: 0.8624
- Recall: 0.8707
- F1: 0.8645
- Accuracy: 0.8707

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 288  | 0.8674          | 0.6762    | 0.7422 | 0.6848 | 0.7422   |
| 1.3706        | 2.0   | 576  | 0.6110          | 0.8177    | 0.8264 | 0.8104 | 0.8264   |
| 1.3706        | 3.0   | 864  | 0.5391          | 0.8407    | 0.8490 | 0.8415 | 0.8490   |
| 0.5184        | 4.0   | 1152 | 0.5059          | 0.8505    | 0.8559 | 0.8493 | 0.8559   |
| 0.5184        | 5.0   | 1440 | 0.5075          | 0.8624    | 0.8707 | 0.8645 | 0.8707   |

### Evaluation results

| Topic              |   Precision |   Recall |       F1 |   Support |
|:-------------------|------------:|---------:|---------:|----------:|
| Aqrar elmlər       |    0.703704 | 0.703704 | 0.703704 |        27 |
| Astronomiya        |    0        | 0        | 0        |         2 |
| Biologiya elmləri  |    0.886598 | 0.819048 | 0.851485 |       105 |
| Coğrafiya          |    0.75     | 0.705882 | 0.727273 |        17 |
| Filologiya elmləri |    0.91954  | 0.914286 | 0.916905 |       175 |
| Fizika             |    0.710526 | 0.794118 | 0.75     |        34 |
| Fəlsəfə            |    0.7      | 0.5      | 0.583333 |        14 |
| Hüquq elmləri      |    1        | 1        | 1        |        29 |
| Kimya              |    0.75     | 0.934426 | 0.832117 |        61 |
| Memarlıq           |    1        | 0.4      | 0.571429 |         5 |
| Mexanika           |    0        | 0        | 0        |         4 |
| Pedaqogika         |    0.854545 | 1        | 0.921569 |        47 |
| Psixologiya        |    0.823529 | 0.777778 | 0.8      |        18 |
| Riyaziyyat         |    0.891892 | 0.846154 | 0.868421 |        39 |
| Siyasi elmlər      |    0.785714 | 0.88     | 0.830189 |        25 |
| Sosiologiya        |    0        | 0        | 0        |         4 |
| Sənətşünaslıq      |    0.843137 | 0.914894 | 0.877551 |        47 |
| Tarix              |    0.857143 | 0.846154 | 0.851613 |        78 |
| Texnika elmləri    |    0.803922 | 0.788462 | 0.796117 |       104 |
| Tibb elmləri       |    0.929936 | 0.986486 | 0.957377 |       148 |
| Yer elmləri        |    0.692308 | 0.692308 | 0.692308 |        13 |
| İqtisad elmləri    |    0.972603 | 0.934211 | 0.95302  |       152 |
| Əczaçılıq elmləri  |    0        | 0        | 0        |         4 |
| macro avg          |    0.690222 | 0.671213 | 0.673235 |      1152 |
| weighted avg       |    0.862363 | 0.87066  | 0.864467 |      1152 |

### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2