File size: 3,847 Bytes
ba6c6b8 a897ff6 ba6c6b8 a897ff6 ba6c6b8 a897ff6 ba6c6b8 a897ff6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-base-azsci-topics
results: []
datasets:
- hajili/azsci_topics
language:
- az
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-azsci-topics
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on [azsci_topics](https://huggingface.co/datasets/hajili/azsci_topics) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5075
- Precision: 0.8624
- Recall: 0.8707
- F1: 0.8645
- Accuracy: 0.8707
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 288 | 0.8674 | 0.6762 | 0.7422 | 0.6848 | 0.7422 |
| 1.3706 | 2.0 | 576 | 0.6110 | 0.8177 | 0.8264 | 0.8104 | 0.8264 |
| 1.3706 | 3.0 | 864 | 0.5391 | 0.8407 | 0.8490 | 0.8415 | 0.8490 |
| 0.5184 | 4.0 | 1152 | 0.5059 | 0.8505 | 0.8559 | 0.8493 | 0.8559 |
| 0.5184 | 5.0 | 1440 | 0.5075 | 0.8624 | 0.8707 | 0.8645 | 0.8707 |
### Evaluation results
| Topic | Precision | Recall | F1 | Support |
|:-------------------|------------:|---------:|---------:|----------:|
| Aqrar elmlər | 0.703704 | 0.703704 | 0.703704 | 27 |
| Astronomiya | 0 | 0 | 0 | 2 |
| Biologiya elmləri | 0.886598 | 0.819048 | 0.851485 | 105 |
| Coğrafiya | 0.75 | 0.705882 | 0.727273 | 17 |
| Filologiya elmləri | 0.91954 | 0.914286 | 0.916905 | 175 |
| Fizika | 0.710526 | 0.794118 | 0.75 | 34 |
| Fəlsəfə | 0.7 | 0.5 | 0.583333 | 14 |
| Hüquq elmləri | 1 | 1 | 1 | 29 |
| Kimya | 0.75 | 0.934426 | 0.832117 | 61 |
| Memarlıq | 1 | 0.4 | 0.571429 | 5 |
| Mexanika | 0 | 0 | 0 | 4 |
| Pedaqogika | 0.854545 | 1 | 0.921569 | 47 |
| Psixologiya | 0.823529 | 0.777778 | 0.8 | 18 |
| Riyaziyyat | 0.891892 | 0.846154 | 0.868421 | 39 |
| Siyasi elmlər | 0.785714 | 0.88 | 0.830189 | 25 |
| Sosiologiya | 0 | 0 | 0 | 4 |
| Sənətşünaslıq | 0.843137 | 0.914894 | 0.877551 | 47 |
| Tarix | 0.857143 | 0.846154 | 0.851613 | 78 |
| Texnika elmləri | 0.803922 | 0.788462 | 0.796117 | 104 |
| Tibb elmləri | 0.929936 | 0.986486 | 0.957377 | 148 |
| Yer elmləri | 0.692308 | 0.692308 | 0.692308 | 13 |
| İqtisad elmləri | 0.972603 | 0.934211 | 0.95302 | 152 |
| Əczaçılıq elmləri | 0 | 0 | 0 | 4 |
| macro avg | 0.690222 | 0.671213 | 0.673235 | 1152 |
| weighted avg | 0.862363 | 0.87066 | 0.864467 | 1152 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |