File size: 3,852 Bytes
6c61a3f 5d23289 6c61a3f 5d23289 6c61a3f 5d23289 6c61a3f 5d23289 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-large-azsci-topics
results: []
datasets:
- hajili/azsci_topics
language:
- az
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-large-azsci-topics
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on [azsci_topics](https://huggingface.co/datasets/hajili/azsci_topics) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4012
- Precision: 0.9115
- Recall: 0.9158
- F1: 0.9121
- Accuracy: 0.9158
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 288 | 0.6402 | 0.8063 | 0.8073 | 0.7900 | 0.8073 |
| 1.0792 | 2.0 | 576 | 0.4482 | 0.8827 | 0.8776 | 0.8743 | 0.8776 |
| 1.0792 | 3.0 | 864 | 0.3947 | 0.8968 | 0.9019 | 0.8977 | 0.9019 |
| 0.3135 | 4.0 | 1152 | 0.4177 | 0.9043 | 0.9080 | 0.9047 | 0.9080 |
| 0.3135 | 5.0 | 1440 | 0.4012 | 0.9115 | 0.9158 | 0.9121 | 0.9158 |
### Evaluation results
| Topic | Precision | Recall | F1 | Support |
|:-------------------|------------:|---------:|---------:|----------:|
| Aqrar elmlər | 0.846154 | 0.814815 | 0.830189 | 27 |
| Astronomiya | 0.666667 | 1 | 0.8 | 2 |
| Biologiya elmləri | 0.910891 | 0.87619 | 0.893204 | 105 |
| Coğrafiya | 0.888889 | 0.941176 | 0.914286 | 17 |
| Filologiya elmləri | 0.971098 | 0.96 | 0.965517 | 175 |
| Fizika | 0.769231 | 0.882353 | 0.821918 | 34 |
| Fəlsəfə | 0.875 | 0.5 | 0.636364 | 14 |
| Hüquq elmləri | 0.966667 | 1 | 0.983051 | 29 |
| Kimya | 0.855072 | 0.967213 | 0.907692 | 61 |
| Memarlıq | 0.714286 | 1 | 0.833333 | 5 |
| Mexanika | 0 | 0 | 0 | 4 |
| Pedaqogika | 0.958333 | 0.978723 | 0.968421 | 47 |
| Psixologiya | 0.944444 | 0.944444 | 0.944444 | 18 |
| Riyaziyyat | 0.921053 | 0.897436 | 0.909091 | 39 |
| Siyasi elmlər | 0.785714 | 0.88 | 0.830189 | 25 |
| Sosiologiya | 0.666667 | 1 | 0.8 | 4 |
| Sənətşünaslıq | 0.84 | 0.893617 | 0.865979 | 47 |
| Tarix | 0.933333 | 0.897436 | 0.915033 | 78 |
| Texnika elmləri | 0.894737 | 0.817308 | 0.854271 | 104 |
| Tibb elmləri | 0.935484 | 0.97973 | 0.957096 | 148 |
| Yer elmləri | 0.846154 | 0.846154 | 0.846154 | 13 |
| İqtisad elmləri | 0.973684 | 0.973684 | 0.973684 | 152 |
| Əczaçılıq elmləri | 0 | 0 | 0 | 4 |
| macro avg | 0.78972 | 0.828273 | 0.80217 | 1152 |
| weighted avg | 0.911546 | 0.915799 | 0.912067 | 1152 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |