|
from typing import Dict, List, Any |
|
from transformers import pipeline |
|
import transformers |
|
from PIL import Image |
|
import base64 |
|
from io import BytesIO |
|
|
|
print('TRANSFORMERS VERSION') |
|
print(transformers.__version__) |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.pipe = pipeline(task="depth-estimation", model=path) |
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
base64_image = data.pop("inputs",data) |
|
if base64_image is None: |
|
raise ValueError("No image provided") |
|
|
|
if base64_image.startswith('data:image/jpeg;base64,'): |
|
base64_image = base64_image.replace('data:image/jpeg;base64,', '') |
|
|
|
image_bytes = base64.b64decode(base64_image) |
|
image = Image.open(BytesIO(image_bytes)) |
|
|
|
depth = self.pipe(image)["depth"] |
|
|
|
return depth |