--- license: other base_model: Meta-Llama-3.1-8B-Instruct tags: - llama-factory - full - generated_from_trainer metrics: - accuracy model-index: - name: all_abla_numina_oly_orca results: [] --- # all_abla_numina_oly_orca This model is a fine-tuned version of [/home/test/testdata/models/Meta-Llama-3.1-8B-Instruct](https://huggingface.co//home/test/testdata/models/Meta-Llama-3.1-8B-Instruct) on the codefeedback-o1, the magicoder-o1, the magicoder-oss-o1, the mathinstruct-MATH-o1, the mathinstruct-augmented-o1, the numina-cn-k12-o1, the numina-not-cn-k12-o1, the reasoning-001-o1 and the ultramedical_mc_o1 datasets. It achieves the following results on the evaluation set: - Loss: 0.2059 - Accuracy: 0.9286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.2107 | 0.5574 | 500 | 0.2142 | 0.9208 | | 0.1561 | 1.1148 | 1000 | 0.2085 | 0.9239 | | 0.1547 | 1.6722 | 1500 | 0.1994 | 0.9265 | | 0.1092 | 2.2297 | 2000 | 0.2073 | 0.9278 | | 0.1073 | 2.7871 | 2500 | 0.2064 | 0.9284 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.0 - Datasets 2.20.0 - Tokenizers 0.19.1