File size: 15,583 Bytes
005e4ad
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f468f3cb520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f468f3bff80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687376531447904222, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKKbJPncPi7xtuhI/KKbJPncPi7xtuhI/KKbJPncPi7xtuhI/KKbJPncPi7xtuhI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAn6KCP7W7v78iYBS/d8jyvoPQlD+bZ8i/ZtZWvo5MjL/KljK/NDHYv1qbur/GPBi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAopsk+dw+LvG26Ej/b5RS8p448u1EujDsopsk+dw+LvG26Ej/b5RS8p448u1EujDsopsk+dw+LvG26Ej/b5RS8p448u1EujDsopsk+dw+LvG26Ej/b5RS8p448u1EujDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3938458  -0.01697515  0.57315713]\n [ 0.3938458  -0.01697515  0.57315713]\n [ 0.3938458  -0.01697515  0.57315713]\n [ 0.3938458  -0.01697515  0.57315713]]", "desired_goal": "[[ 1.0205878  -1.4979159  -0.5795919 ]\n [-0.47418568  1.1626133  -1.5656618 ]\n [-0.20980224 -1.0960863  -0.69761336]\n [-1.6890016  -1.457866   -0.5946773 ]]", "observation": "[[ 0.3938458  -0.01697515  0.57315713 -0.009088   -0.00287716  0.00427798]\n [ 0.3938458  -0.01697515  0.57315713 -0.009088   -0.00287716  0.00427798]\n [ 0.3938458  -0.01697515  0.57315713 -0.009088   -0.00287716  0.00427798]\n [ 0.3938458  -0.01697515  0.57315713 -0.009088   -0.00287716  0.00427798]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIea/vWDR6rtA8aY9cHMNvtE/CL7xULw9wN0zPUwZ+D1R0q08GkPjPWhMnT2xvkg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.09370065 -0.00716607  0.08151484]\n [-0.13813567 -0.13305594  0.09195126]\n [ 0.04391265  0.121142    0.02121845]\n [ 0.11096783  0.07680589  0.19603993]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz7pGy4Ge/L+UhpRSlIwBbJRLMowBdJRHQJefMZGax5d1fZQoaAZoCWgPQwh/vi1YqqsBwJSGlFKUaBVLMmgWR0CXnsE4NqgzdX2UKGgGaAloD0MIvmiPF9IBBMCUhpRSlGgVSzJoFkdAl55Mfms/6nV9lChoBmgJaA9DCMx9chQgqhDAlIaUUpRoFUsyaBZHQJedvkLhJiB1fZQoaAZoCWgPQwhfmiLA6Z3+v5SGlFKUaBVLMmgWR0CXotObRWtEdX2UKGgGaAloD0MIuRyvQPSkAMCUhpRSlGgVSzJoFkdAl6JkDuBtlHV9lChoBmgJaA9DCPj7xWzJigbAlIaUUpRoFUsyaBZHQJeh8IldC3R1fZQoaAZoCWgPQwhZT62+uir5v5SGlFKUaBVLMmgWR0CXoWHM2WIHdX2UKGgGaAloD0MIWmYRiq0AB8CUhpRSlGgVSzJoFkdAl6ZwFgUlA3V9lChoBmgJaA9DCNMtO8Q/7BDAlIaUUpRoFUsyaBZHQJemATXarWB1fZQoaAZoCWgPQwgpBd1e0pj2v5SGlFKUaBVLMmgWR0CXpY0aIeo2dX2UKGgGaAloD0MIv9TPm4q0A8CUhpRSlGgVSzJoFkdAl6T/NRm9QHV9lChoBmgJaA9DCCv7rgj+dwrAlIaUUpRoFUsyaBZHQJeqLWWhRIl1fZQoaAZoCWgPQwgvMCsU6R4DwJSGlFKUaBVLMmgWR0CXqb5Jsfq5dX2UKGgGaAloD0MI8kQQ5+GEAsCUhpRSlGgVSzJoFkdAl6lKt5le4XV9lChoBmgJaA9DCG0CDMufLwTAlIaUUpRoFUsyaBZHQJeovPOY6XB1fZQoaAZoCWgPQwgFiIIZU5ADwJSGlFKUaBVLMmgWR0CXrdtvn8sMdX2UKGgGaAloD0MId4TTghfdAMCUhpRSlGgVSzJoFkdAl61r0rbxmXV9lChoBmgJaA9DCHU6kPXUqgXAlIaUUpRoFUsyaBZHQJes93X7LuB1fZQoaAZoCWgPQwhlNPJ5xRMKwJSGlFKUaBVLMmgWR0CXrGol2NeddX2UKGgGaAloD0MIoBov3SRmAcCUhpRSlGgVSzJoFkdAl7A+eOGTLXV9lChoBmgJaA9DCGx8JvvnKQDAlIaUUpRoFUsyaBZHQJevzMEA5rB1fZQoaAZoCWgPQwgGSZ9W0T8UwJSGlFKUaBVLMmgWR0CXr1Z9/jKgdX2UKGgGaAloD0MIQGg9fJm4EcCUhpRSlGgVSzJoFkdAl67GyC4Bm3V9lChoBmgJaA9DCLAbti3KzAvAlIaUUpRoFUsyaBZHQJeyQTewcHZ1fZQoaAZoCWgPQwjK4ZNOJJgEwJSGlFKUaBVLMmgWR0CXsc9qUNaydX2UKGgGaAloD0MIXpz4akdxDMCUhpRSlGgVSzJoFkdAl7FZRO1v23V9lChoBmgJaA9DCB/Y8V8g6AXAlIaUUpRoFUsyaBZHQJewybmU4aR1fZQoaAZoCWgPQwgS+wRQjKz9v5SGlFKUaBVLMmgWR0CXtDE5hjOLdX2UKGgGaAloD0MI9pUH6SmyFMCUhpRSlGgVSzJoFkdAl7PAAZKnN3V9lChoBmgJaA9DCE7tDFNbKve/lIaUUpRoFUsyaBZHQJezSYKIBR11fZQoaAZoCWgPQwhfCaTErm0FwJSGlFKUaBVLMmgWR0CXsrpnYg7pdX2UKGgGaAloD0MIGcizy7cOEMCUhpRSlGgVSzJoFkdAl7Y5UDMeOnV9lChoBmgJaA9DCJFDxM2pxAHAlIaUUpRoFUsyaBZHQJe1yA2AG0N1fZQoaAZoCWgPQwhV98jmqpkDwJSGlFKUaBVLMmgWR0CXtVJlrdnCdX2UKGgGaAloD0MI7rPKTGk9B8CUhpRSlGgVSzJoFkdAl7TDCDVYp3V9lChoBmgJaA9DCNp0BHCzGAvAlIaUUpRoFUsyaBZHQJe4XtXxOL11fZQoaAZoCWgPQwjDDfj8MIIMwJSGlFKUaBVLMmgWR0CXt+2Rq46PdX2UKGgGaAloD0MILnb7rDLzC8CUhpRSlGgVSzJoFkdAl7d4I8hcJXV9lChoBmgJaA9DCP+R6dDpuRTAlIaUUpRoFUsyaBZHQJe26L5ylvZ1fZQoaAZoCWgPQwjFHAQdrQoGwJSGlFKUaBVLMmgWR0CXum+4b0e2dX2UKGgGaAloD0MI8fYgBOTLBcCUhpRSlGgVSzJoFkdAl7oAD/2kBXV9lChoBmgJaA9DCDCca5ihUQrAlIaUUpRoFUsyaBZHQJe5ij/Mnqp1fZQoaAZoCWgPQwiNXaJ6a4ABwJSGlFKUaBVLMmgWR0CXuPqvvBrOdX2UKGgGaAloD0MIrK3YX3ZPCMCUhpRSlGgVSzJoFkdAl7yhrBTGYXV9lChoBmgJaA9DCC+JsyJqAg3AlIaUUpRoFUsyaBZHQJe8MAo5PuZ1fZQoaAZoCWgPQwjUfQBSm/gOwJSGlFKUaBVLMmgWR0CXu7pZwGW2dX2UKGgGaAloD0MIxapBmNt9EsCUhpRSlGgVSzJoFkdAl7sq3qiXY3V9lChoBmgJaA9DCLAe963WqQnAlIaUUpRoFUsyaBZHQJe+niT+vQp1fZQoaAZoCWgPQwiDUrRyL7ADwJSGlFKUaBVLMmgWR0CXvizPKMefdX2UKGgGaAloD0MI+6wyU1q//b+UhpRSlGgVSzJoFkdAl7221D0Dl3V9lChoBmgJaA9DCPp9/+bFyQbAlIaUUpRoFUsyaBZHQJe9Jr30wrV1fZQoaAZoCWgPQwgrM6X1twQNwJSGlFKUaBVLMmgWR0CXwKfhddE9dX2UKGgGaAloD0MI1NNH4A+fBcCUhpRSlGgVSzJoFkdAl8A2wqy4WnV9lChoBmgJaA9DCH80nDI3XwvAlIaUUpRoFUsyaBZHQJe/wX/HYHx1fZQoaAZoCWgPQwgBhuXPt6UCwJSGlFKUaBVLMmgWR0CXvzF6Rhc8dX2UKGgGaAloD0MIjZsaaD7HAMCUhpRSlGgVSzJoFkdAl8KwZGax5nV9lChoBmgJaA9DCDnv/+OEaQHAlIaUUpRoFUsyaBZHQJfCPwBo24x1fZQoaAZoCWgPQwiloNtLGiMBwJSGlFKUaBVLMmgWR0CXwcjs2NvPdX2UKGgGaAloD0MI+z+H+fJiCcCUhpRSlGgVSzJoFkdAl8E5RGc4HXV9lChoBmgJaA9DCBvxZDczuvm/lIaUUpRoFUsyaBZHQJfEvbh3qzJ1fZQoaAZoCWgPQwjxuKgWEeUBwJSGlFKUaBVLMmgWR0CXxEx0dRzjdX2UKGgGaAloD0MIaHdIMUBi+7+UhpRSlGgVSzJoFkdAl8PWWldka3V9lChoBmgJaA9DCGCvsOB+0BDAlIaUUpRoFUsyaBZHQJfDRk/bCaZ1fZQoaAZoCWgPQwgG8YEd/yUAwJSGlFKUaBVLMmgWR0CXxsZr56+ndX2UKGgGaAloD0MIAd9t3jiJBMCUhpRSlGgVSzJoFkdAl8ZVEAo5P3V9lChoBmgJaA9DCAVsByP2KQ7AlIaUUpRoFUsyaBZHQJfF3pdKNAF1fZQoaAZoCWgPQwhhjbPpCKAMwJSGlFKUaBVLMmgWR0CXxU9gWrOrdX2UKGgGaAloD0MIKEnXTL4Z/r+UhpRSlGgVSzJoFkdAl8jnYL9deXV9lChoBmgJaA9DCBhBYyZRbwzAlIaUUpRoFUsyaBZHQJfIdf/m1Y11fZQoaAZoCWgPQwgczZGVXwYCwJSGlFKUaBVLMmgWR0CXyAAVO9FndX2UKGgGaAloD0MIyJdQweGlD8CUhpRSlGgVSzJoFkdAl8dwuZkTYnV9lChoBmgJaA9DCAhagSGrGwXAlIaUUpRoFUsyaBZHQJfK1SaVlf91fZQoaAZoCWgPQwjVCP1MvS4EwJSGlFKUaBVLMmgWR0CXymNwzch1dX2UKGgGaAloD0MI4lzDDI1nC8CUhpRSlGgVSzJoFkdAl8ntgfEGaHV9lChoBmgJaA9DCGsqi8IuSgfAlIaUUpRoFUsyaBZHQJfJXXd0q6R1fZQoaAZoCWgPQwiTGARWDu0KwJSGlFKUaBVLMmgWR0CXzMgKF7D3dX2UKGgGaAloD0MIpztPPGcL+r+UhpRSlGgVSzJoFkdAl8xWUbDMvHV9lChoBmgJaA9DCIC21awzfgLAlIaUUpRoFUsyaBZHQJfL4CDEm6Z1fZQoaAZoCWgPQwhvnuqQm+EFwJSGlFKUaBVLMmgWR0CXy1CHymQ9dX2UKGgGaAloD0MI44qLo3JzC8CUhpRSlGgVSzJoFkdAl87TQE6kqXV9lChoBmgJaA9DCML4adybvwHAlIaUUpRoFUsyaBZHQJfOYcT8HfN1fZQoaAZoCWgPQwgGEalpF3MDwJSGlFKUaBVLMmgWR0CXzeu3c580dX2UKGgGaAloD0MIWkjA6PIGCcCUhpRSlGgVSzJoFkdAl81cKTjebnV9lChoBmgJaA9DCGyU9ZuJ6QLAlIaUUpRoFUsyaBZHQJfQ65mRNh51fZQoaAZoCWgPQwjajxSRYdX+v5SGlFKUaBVLMmgWR0CX0HoxHoX9dX2UKGgGaAloD0MI7ZklAWqKAcCUhpRSlGgVSzJoFkdAl9AEVSGahHV9lChoBmgJaA9DCJG3XP3YBA3AlIaUUpRoFUsyaBZHQJfPdJTVDrt1fZQoaAZoCWgPQwjqr1dYcD8CwJSGlFKUaBVLMmgWR0CX0ucCHRCydX2UKGgGaAloD0MI5xw8E5rEBcCUhpRSlGgVSzJoFkdAl9J1zltCRnV9lChoBmgJaA9DCEllijkIevK/lIaUUpRoFUsyaBZHQJfR/9YOlO51fZQoaAZoCWgPQwhfKcsQx9oJwJSGlFKUaBVLMmgWR0CX0W/5ckdFdX2UKGgGaAloD0MIEDy+vWvQ+r+UhpRSlGgVSzJoFkdAl9UB3eN1hnV9lChoBmgJaA9DCATJO4cyNAbAlIaUUpRoFUsyaBZHQJfUkFgUlAx1fZQoaAZoCWgPQwilSpS9pdz+v5SGlFKUaBVLMmgWR0CX1Bo8ZDRddX2UKGgGaAloD0MIkbkyqDZ49L+UhpRSlGgVSzJoFkdAl9OKtLcsUnV9lChoBmgJaA9DCD19BP7ws/C/lIaUUpRoFUsyaBZHQJfXbVAiV0N1fZQoaAZoCWgPQwjNID6w458KwJSGlFKUaBVLMmgWR0CX1v1CgK4QdX2UKGgGaAloD0MIUpyjjo4r/L+UhpRSlGgVSzJoFkdAl9aI3aSLZXV9lChoBmgJaA9DCL+36c9+BAnAlIaUUpRoFUsyaBZHQJfV+mO2iL51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}