a2c-PandaReachDense-v2 / config.json
hannahh7's picture
Initial commit
94e72da
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f468f3cb520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f468f3bff80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687382891367496850, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASsLEPii69rzfDAo/SsLEPii69rzfDAo/SsLEPii69rzfDAo/SsLEPii69rzfDAo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/RBGP8tukz/OBJO+qEGrv/7B+75rs8I/3nfOP7Blt7/m8ka/PXCcv1OCoT/U2+K+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABKwsQ+KLr2vN8MCj/hbKK7xWgOu+18JLtKwsQ+KLr2vN8MCj/hbKK7xWgOu+18JLtKwsQ+KLr2vN8MCj/hbKK7xWgOu+18JLtKwsQ+KLr2vN8MCj/hbKK7xWgOu+18JLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3842948 -0.03011806 0.5392589 ]\n [ 0.3842948 -0.03011806 0.5392589 ]\n [ 0.3842948 -0.03011806 0.5392589 ]\n [ 0.3842948 -0.03011806 0.5392589 ]]", "desired_goal": "[[ 0.7736967 1.1518186 -0.28714603]\n [-1.3379412 -0.49171442 1.5211004 ]\n [ 1.613033 -1.4327908 -0.77714384]\n [-1.2221752 1.2617897 -0.4430834 ]]", "observation": "[[ 0.3842948 -0.03011806 0.5392589 -0.00495683 -0.00217299 -0.00250989]\n [ 0.3842948 -0.03011806 0.5392589 -0.00495683 -0.00217299 -0.00250989]\n [ 0.3842948 -0.03011806 0.5392589 -0.00495683 -0.00217299 -0.00250989]\n [ 0.3842948 -0.03011806 0.5392589 -0.00495683 -0.00217299 -0.00250989]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACbjAPBjpDL5R3lM+3DXoPQm5AL4mdcE8F0AePQN23D2twq89+S0EPsXaGb0TF0s+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02352525 -0.13760793 0.20690276]\n [ 0.11338398 -0.12570585 0.02361543]\n [ 0.03863534 0.10764696 0.08582053]\n [ 0.12908162 -0.03756215 0.19833021]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIb0c4LXiRCcCUhpRSlIwBbJRLMowBdJRHQJgz8cKgIyF1fZQoaAZoCWgPQwjrcHSV7g4FwJSGlFKUaBVLMmgWR0CYM12GqPwNdX2UKGgGaAloD0MIEOuNWmG6BcCUhpRSlGgVSzJoFkdAmDLmlEZzgnV9lChoBmgJaA9DCEpCIm3jbwzAlIaUUpRoFUsyaBZHQJgyQbp/wy91fZQoaAZoCWgPQwhV+glnt7YDwJSGlFKUaBVLMmgWR0CYN5p6yB07dX2UKGgGaAloD0MIQSjv42gOBMCUhpRSlGgVSzJoFkdAmDcEypJf6XV9lChoBmgJaA9DCKGFBIwubwLAlIaUUpRoFUsyaBZHQJg2i6tknTl1fZQoaAZoCWgPQwiNmq+Sjy0SwJSGlFKUaBVLMmgWR0CYNeUzKs+3dX2UKGgGaAloD0MI12t6UFCqC8CUhpRSlGgVSzJoFkdAmDnVjRUm2XV9lChoBmgJaA9DCHkiiPNwgg7AlIaUUpRoFUsyaBZHQJg5P+717IF1fZQoaAZoCWgPQwhYrrfNVGgFwJSGlFKUaBVLMmgWR0CYOMaQV9F4dX2UKGgGaAloD0MIxJRIopdREcCUhpRSlGgVSzJoFkdAmDggAlv603V9lChoBmgJaA9DCNXKhF/qxwnAlIaUUpRoFUsyaBZHQJg7+RMewLV1fZQoaAZoCWgPQwh7hQX3A979v5SGlFKUaBVLMmgWR0CYO2MuOCGvdX2UKGgGaAloD0MI6X5OQX62AcCUhpRSlGgVSzJoFkdAmDrp53Tuv3V9lChoBmgJaA9DCFT83xEVKva/lIaUUpRoFUsyaBZHQJg6Q2LpA2R1fZQoaAZoCWgPQwgSSl8IOa8OwJSGlFKUaBVLMmgWR0CYPie3hGYsdX2UKGgGaAloD0MIiGTIsfUsCsCUhpRSlGgVSzJoFkdAmD2R5s0pE3V9lChoBmgJaA9DCLK4/8h0eBLAlIaUUpRoFUsyaBZHQJg9GGFi8Wd1fZQoaAZoCWgPQwi7mGa616kKwJSGlFKUaBVLMmgWR0CYPHGA08/2dX2UKGgGaAloD0MIg7709udCCMCUhpRSlGgVSzJoFkdAmEBhPCVKPHV9lChoBmgJaA9DCDqUoSqm0vG/lIaUUpRoFUsyaBZHQJg/y4wyqMp1fZQoaAZoCWgPQwj/lZUmpSD4v5SGlFKUaBVLMmgWR0CYP1ItUXHjdX2UKGgGaAloD0MI5UUm4NfoBsCUhpRSlGgVSzJoFkdAmD6rPIGQjnV9lChoBmgJaA9DCEpE+BdBYwzAlIaUUpRoFUsyaBZHQJhCmVQhwER1fZQoaAZoCWgPQwgnTYOieWAJwJSGlFKUaBVLMmgWR0CYQgO5avA5dX2UKGgGaAloD0MIwTbiyW6m9r+UhpRSlGgVSzJoFkdAmEGKu8scyXV9lChoBmgJaA9DCEcAN4sXSwXAlIaUUpRoFUsyaBZHQJhA432mHgx1fZQoaAZoCWgPQwiZZU8CmzP0v5SGlFKUaBVLMmgWR0CYRMEETxoadX2UKGgGaAloD0MILpJ2o4+59L+UhpRSlGgVSzJoFkdAmEQrQTmGNHV9lChoBmgJaA9DCO0seqcCjgrAlIaUUpRoFUsyaBZHQJhDsbyYoiN1fZQoaAZoCWgPQwhgWWlSCnoCwJSGlFKUaBVLMmgWR0CYQwrZ8KG+dX2UKGgGaAloD0MIQdgpVg3yEsCUhpRSlGgVSzJoFkdAmEb0BXCCSXV9lChoBmgJaA9DCMWM8PYgxATAlIaUUpRoFUsyaBZHQJhGXlgc94h1fZQoaAZoCWgPQwjPnzaq08Hxv5SGlFKUaBVLMmgWR0CYReUJv5xjdX2UKGgGaAloD0MIC/FIvDzdCcCUhpRSlGgVSzJoFkdAmEU/NFBppXV9lChoBmgJaA9DCOAO1CmPrg7AlIaUUpRoFUsyaBZHQJhJFH8TBZZ1fZQoaAZoCWgPQwhRM6SK4tUCwJSGlFKUaBVLMmgWR0CYSH84gieNdX2UKGgGaAloD0MIguMybmpgBMCUhpRSlGgVSzJoFkdAmEgF1r6+FnV9lChoBmgJaA9DCMgm+RG/gg3AlIaUUpRoFUsyaBZHQJhHXp+tr9F1fZQoaAZoCWgPQwhYObTIdk4RwJSGlFKUaBVLMmgWR0CYSzZuQ6p6dX2UKGgGaAloD0MIfVnaqbm8EcCUhpRSlGgVSzJoFkdAmEqgdGRV63V9lChoBmgJaA9DCBO3CmKgawrAlIaUUpRoFUsyaBZHQJhKJoAXEZR1fZQoaAZoCWgPQwgL1c3F3xYEwJSGlFKUaBVLMmgWR0CYSX+NcW0rdX2UKGgGaAloD0MImBQfn5DdAsCUhpRSlGgVSzJoFkdAmE1dt/FzdXV9lChoBmgJaA9DCGQgzy7fmhHAlIaUUpRoFUsyaBZHQJhMx5fMOgB1fZQoaAZoCWgPQwi+MJkqGBX7v5SGlFKUaBVLMmgWR0CYTE4X40uUdX2UKGgGaAloD0MInmD/dW6a+b+UhpRSlGgVSzJoFkdAmEunMINVinV9lChoBmgJaA9DCO6VeauuQwbAlIaUUpRoFUsyaBZHQJhPSunuRcN1fZQoaAZoCWgPQwivCWmNQWf6v5SGlFKUaBVLMmgWR0CYTrVaOgg6dX2UKGgGaAloD0MIPWAeMuXjBcCUhpRSlGgVSzJoFkdAmE476LwWnHV9lChoBmgJaA9DCOC7zRsnNRPAlIaUUpRoFUsyaBZHQJhNlLFn7Hh1fZQoaAZoCWgPQwgPf03WqGcJwJSGlFKUaBVLMmgWR0CYUUAuZkTYdX2UKGgGaAloD0MIlPqytFNTAcCUhpRSlGgVSzJoFkdAmFCq0pmVaHV9lChoBmgJaA9DCMxiYvNxLQLAlIaUUpRoFUsyaBZHQJhQMMfA9FF1fZQoaAZoCWgPQwjp19ZP/3kNwJSGlFKUaBVLMmgWR0CYT4lTWGypdX2UKGgGaAloD0MIxqNUwhP697+UhpRSlGgVSzJoFkdAmFM0DuBtlHV9lChoBmgJaA9DCAk4hCo1+/u/lIaUUpRoFUsyaBZHQJhSnfMwDeV1fZQoaAZoCWgPQwjX+bfLfh0AwJSGlFKUaBVLMmgWR0CYUiQsf7rLdX2UKGgGaAloD0MIg2qDE9HPD8CUhpRSlGgVSzJoFkdAmFF9VrAP/nV9lChoBmgJaA9DCHTU0XE1QhPAlIaUUpRoFUsyaBZHQJhVUMnZ00Z1fZQoaAZoCWgPQwgW3A94YNAQwJSGlFKUaBVLMmgWR0CYVLrylN1ydX2UKGgGaAloD0MIgnNGlPZmBMCUhpRSlGgVSzJoFkdAmFRBdt2s73V9lChoBmgJaA9DCH8WS5F85QDAlIaUUpRoFUsyaBZHQJhTmsgdOqN1fZQoaAZoCWgPQwiKOnMPCd/8v5SGlFKUaBVLMmgWR0CYV3kBCD28dX2UKGgGaAloD0MIi1BsBU1rBsCUhpRSlGgVSzJoFkdAmFbjZYgaFXV9lChoBmgJaA9DCCe/RSdLjQLAlIaUUpRoFUsyaBZHQJhWafSQYDV1fZQoaAZoCWgPQwgm5e5zfPQBwJSGlFKUaBVLMmgWR0CYVcLDQ7cPdX2UKGgGaAloD0MIMZbpl4h3C8CUhpRSlGgVSzJoFkdAmFl+tnwocHV9lChoBmgJaA9DCLVv7q8eNwDAlIaUUpRoFUsyaBZHQJhY6JWNm191fZQoaAZoCWgPQwh4liAjoMICwJSGlFKUaBVLMmgWR0CYWG7aZhKEdX2UKGgGaAloD0MIMevFUE60/7+UhpRSlGgVSzJoFkdAmFfH2AXl83V9lChoBmgJaA9DCJ+qQgOx7A3AlIaUUpRoFUsyaBZHQJhbe6RQrMF1fZQoaAZoCWgPQwi693DJcacCwJSGlFKUaBVLMmgWR0CYWuV2Rq46dX2UKGgGaAloD0MIBfuvc9NmAMCUhpRSlGgVSzJoFkdAmFprrLQokXV9lChoBmgJaA9DCGpOXmQCPgTAlIaUUpRoFUsyaBZHQJhZxGwzLwF1fZQoaAZoCWgPQwh9yjFZ3P8BwJSGlFKUaBVLMmgWR0CYXZMspXp4dX2UKGgGaAloD0MIkga3tYXnAcCUhpRSlGgVSzJoFkdAmFz9RFZxJnV9lChoBmgJaA9DCCxi2GFMyhLAlIaUUpRoFUsyaBZHQJhcg82aUiZ1fZQoaAZoCWgPQwhKuJBHcKP5v5SGlFKUaBVLMmgWR0CYW9x8UmD2dX2UKGgGaAloD0MIyM9GrptS+r+UhpRSlGgVSzJoFkdAmF/ROpKjBXV9lChoBmgJaA9DCDPcgM8PY/S/lIaUUpRoFUsyaBZHQJhfPgGbCrN1fZQoaAZoCWgPQwhssdtnldkHwJSGlFKUaBVLMmgWR0CYXsabWmP6dX2UKGgGaAloD0MIaTo7GRzl+L+UhpRSlGgVSzJoFkdAmF4hTsIE83V9lChoBmgJaA9DCP2gLlIoawbAlIaUUpRoFUsyaBZHQJhjbQmeDnN1fZQoaAZoCWgPQwg/O+C6YoYMwJSGlFKUaBVLMmgWR0CYYtof0VafdX2UKGgGaAloD0MIg23Ek93MCcCUhpRSlGgVSzJoFkdAmGJimQ8wH3V9lChoBmgJaA9DCPIGmPkO7hjAlIaUUpRoFUsyaBZHQJhhvVy3kPt1fZQoaAZoCWgPQwgvaYzWURUMwJSGlFKUaBVLMmgWR0CYZwNgBtDVdX2UKGgGaAloD0MIXf3YJD8CBMCUhpRSlGgVSzJoFkdAmGZvOQhfSnV9lChoBmgJaA9DCMKlY84zVhDAlIaUUpRoFUsyaBZHQJhl9zxPO6d1fZQoaAZoCWgPQwiKP4o6c28PwJSGlFKUaBVLMmgWR0CYZVGqxTsIdX2UKGgGaAloD0MIodrgRPTrAcCUhpRSlGgVSzJoFkdAmGq6jzqbB3V9lChoBmgJaA9DCNWuCWmNQQHAlIaUUpRoFUsyaBZHQJhqJlRP4211fZQoaAZoCWgPQwgvbTgsDVwTwJSGlFKUaBVLMmgWR0CYaa61LJ0XdX2UKGgGaAloD0MIi+JV1jaFB8CUhpRSlGgVSzJoFkdAmGkJylvZRXV9lChoBmgJaA9DCH6qCg3E8gTAlIaUUpRoFUsyaBZHQJhuiKTB68h1fZQoaAZoCWgPQwhjey3ovbHzv5SGlFKUaBVLMmgWR0CYbfTc6/7BdX2UKGgGaAloD0MIiL67lSW6AMCUhpRSlGgVSzJoFkdAmG19wR5C4XV9lChoBmgJaA9DCGrbMAqCZwzAlIaUUpRoFUsyaBZHQJhs2OJcgQp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}