a2c-PandaReachDense-v2 / config.json
hannahh7's picture
Initial commit
61634a0
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f468f3cb520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f468f3bff80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687384695980320893, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnwjEPl2eYLxAnBw/nwjEPl2eYLxAnBw/nwjEPl2eYLxAnBw/nwjEPl2eYLxAnBw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8/edP4hTDb8oV12+T3LaPuWK3b90Yzi+bj9/P4vGCT/18dc/M9QJv4ONtb+bOp0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACfCMQ+XZ5gvECcHD+ecTK8XoBsOj1Q1jqfCMQ+XZ5gvECcHD+ecTK8XoBsOj1Q1jqfCMQ+XZ5gvECcHD+ecTK8XoBsOj1Q1jqfCMQ+XZ5gvECcHD+ecTK8XoBsOj1Q1jqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38287827 -0.01370963 0.6117592 ]\n [ 0.38287827 -0.01370963 0.6117592 ]\n [ 0.38287827 -0.01370963 0.6117592 ]\n [ 0.38287827 -0.01370963 0.6117592 ]]", "desired_goal": "[[ 1.2341293 -0.55205584 -0.21615279]\n [ 0.42665336 -1.7308012 -0.18006688]\n [ 0.9970616 0.5381858 1.6870714 ]\n [-0.53839415 -1.4183811 1.228351 ]]", "observation": "[[ 0.38287827 -0.01370963 0.6117592 -0.01089135 0.00090218 0.00163508]\n [ 0.38287827 -0.01370963 0.6117592 -0.01089135 0.00090218 0.00163508]\n [ 0.38287827 -0.01370963 0.6117592 -0.01089135 0.00090218 0.00163508]\n [ 0.38287827 -0.01370963 0.6117592 -0.01089135 0.00090218 0.00163508]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgUHNPEKxrDxVpwQ+M+OJPdIdjL2hGEs+BVvkPf2cer2Uldc9Qyz0PTq7qL0yLdo8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02505565 0.02108062 0.12954457]\n [ 0.06732788 -0.06841625 0.19833614]\n [ 0.11150173 -0.06118487 0.10526577]\n [ 0.11922505 -0.08238836 0.02663288]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP1JEhlU8DsCUhpRSlIwBbJRLMowBdJRHQJfhEF5fMOh1fZQoaAZoCWgPQwgXEFoPXyb4v5SGlFKUaBVLMmgWR0CX4GetjkMkdX2UKGgGaAloD0MIY0M3+wMFBsCUhpRSlGgVSzJoFkdAl9+9M9KVZHV9lChoBmgJaA9DCOqwwi0fSQ3AlIaUUpRoFUsyaBZHQJfe9l/Yrax1fZQoaAZoCWgPQwhoy7kUV7UUwJSGlFKUaBVLMmgWR0CX4yKdQO4HdX2UKGgGaAloD0MIM9yAzw9jCMCUhpRSlGgVSzJoFkdAl+J6jrRjSXV9lChoBmgJaA9DCMgJE0azIhHAlIaUUpRoFUsyaBZHQJfhz+irT6V1fZQoaAZoCWgPQwhJ10y+2aYMwJSGlFKUaBVLMmgWR0CX4QkpZwGXdX2UKGgGaAloD0MIHCRE+YJWFMCUhpRSlGgVSzJoFkdAl+Vjvd/KAHV9lChoBmgJaA9DCAJ+jSRBOPm/lIaUUpRoFUsyaBZHQJfku2mYSg51fZQoaAZoCWgPQwjjUpW2uIYSwJSGlFKUaBVLMmgWR0CX5BER8MNMdX2UKGgGaAloD0MIVcA9z582CsCUhpRSlGgVSzJoFkdAl+NKiGnGbXV9lChoBmgJaA9DCHk8LT9w9QXAlIaUUpRoFUsyaBZHQJfn3QLNOdp1fZQoaAZoCWgPQwhNvtnmxlQFwJSGlFKUaBVLMmgWR0CX5zTspobodX2UKGgGaAloD0MIOWHCaFbWAMCUhpRSlGgVSzJoFkdAl+aK4+bExnV9lChoBmgJaA9DCA8J3/sbtPG/lIaUUpRoFUsyaBZHQJflxGMGX5Z1fZQoaAZoCWgPQwjY1HlU/J8DwJSGlFKUaBVLMmgWR0CX6iJQtSQ6dX2UKGgGaAloD0MIvVMB9zz/7r+UhpRSlGgVSzJoFkdAl+l5/9YOlXV9lChoBmgJaA9DCICAtWrXRAvAlIaUUpRoFUsyaBZHQJfoz1K5Cnh1fZQoaAZoCWgPQwhaSSu+ofD+v5SGlFKUaBVLMmgWR0CX6AikO7QLdX2UKGgGaAloD0MIkpGzsKcdDMCUhpRSlGgVSzJoFkdAl+xov38GcHV9lChoBmgJaA9DCDT2JRsPdv+/lIaUUpRoFUsyaBZHQJfrwJBw++x1fZQoaAZoCWgPQwjGNT6T/fPzv5SGlFKUaBVLMmgWR0CX6xX1J17qdX2UKGgGaAloD0MI8bc9QWI7DsCUhpRSlGgVSzJoFkdAl+pP7aZhKHV9lChoBmgJaA9DCFX3yOaqGQDAlIaUUpRoFUsyaBZHQJfupDPWxyJ1fZQoaAZoCWgPQwg1C7Q7pNj/v5SGlFKUaBVLMmgWR0CX7fwvg3tKdX2UKGgGaAloD0MIml33ViQm6L+UhpRSlGgVSzJoFkdAl+1R8MNMG3V9lChoBmgJaA9DCOKvyRr10Pi/lIaUUpRoFUsyaBZHQJfsi07bL2Z1fZQoaAZoCWgPQwhseHqlLKMTwJSGlFKUaBVLMmgWR0CX8QYZl4C7dX2UKGgGaAloD0MIQrPr3oqkBMCUhpRSlGgVSzJoFkdAl/Bd3wCr93V9lChoBmgJaA9DCAx4mWGjbPa/lIaUUpRoFUsyaBZHQJfvs3dbgTB1fZQoaAZoCWgPQwgbKsb5m5D6v5SGlFKUaBVLMmgWR0CX7uzltCRfdX2UKGgGaAloD0MIEvbtJCL8BMCUhpRSlGgVSzJoFkdAl/Mq+nIhhnV9lChoBmgJaA9DCKIkJNI2XgjAlIaUUpRoFUsyaBZHQJfygs5GSZB1fZQoaAZoCWgPQwjwpfCg2XUIwJSGlFKUaBVLMmgWR0CX8djFQ2uQdX2UKGgGaAloD0MIxlIkXwnkAsCUhpRSlGgVSzJoFkdAl/ER15jYqXV9lChoBmgJaA9DCK0Tl+MViAjAlIaUUpRoFUsyaBZHQJf1e5Fw1ix1fZQoaAZoCWgPQwiIuaRquwnyv5SGlFKUaBVLMmgWR0CX9NNKAavSdX2UKGgGaAloD0MIhsjp6/n6DMCUhpRSlGgVSzJoFkdAl/Qo+4b0e3V9lChoBmgJaA9DCKuSyD7IsgfAlIaUUpRoFUsyaBZHQJfzYjs2NvR1fZQoaAZoCWgPQwhDc51GWmoBwJSGlFKUaBVLMmgWR0CX96GLUCq7dX2UKGgGaAloD0MIZcdGIF5XHsCUhpRSlGgVSzJoFkdAl/b5Tho/RnV9lChoBmgJaA9DCM7Cnnb4SxPAlIaUUpRoFUsyaBZHQJf2TxWkrPN1fZQoaAZoCWgPQwhJ88e0Ns33v5SGlFKUaBVLMmgWR0CX9YifQKKHdX2UKGgGaAloD0MIVmMJa2Ns9r+UhpRSlGgVSzJoFkdAl/nfYFqzq3V9lChoBmgJaA9DCF+y8WCL3e6/lIaUUpRoFUsyaBZHQJf5Nw1ivxJ1fZQoaAZoCWgPQwg4a/C+Khfvv5SGlFKUaBVLMmgWR0CX+Iy9EkSmdX2UKGgGaAloD0MI4e8XsyWbEsCUhpRSlGgVSzJoFkdAl/fF8G9pRHV9lChoBmgJaA9DCLLUer/RzgvAlIaUUpRoFUsyaBZHQJf8BYU34sV1fZQoaAZoCWgPQwjmPc40YXsJwJSGlFKUaBVLMmgWR0CX+11eBxxUdX2UKGgGaAloD0MI1o7iHHW0+L+UhpRSlGgVSzJoFkdAl/qzD8+A3HV9lChoBmgJaA9DCDPhl/p54xjAlIaUUpRoFUsyaBZHQJf57HktEoh1fZQoaAZoCWgPQwhxBRTq6aPyv5SGlFKUaBVLMmgWR0CX/+38n/kvdX2UKGgGaAloD0MISZ7r+3BQ+7+UhpRSlGgVSzJoFkdAl/9KCcwxnHV9lChoBmgJaA9DCHeBkgIL4Oy/lIaUUpRoFUsyaBZHQJf+ojhUBGR1fZQoaAZoCWgPQwjmd5rMeNv/v5SGlFKUaBVLMmgWR0CX/d/PPcBVdX2UKGgGaAloD0MI9KljldIz+7+UhpRSlGgVSzJoFkdAmAOqujh1knV9lChoBmgJaA9DCN5Zu+1CM/S/lIaUUpRoFUsyaBZHQJgDBBt1p0x1fZQoaAZoCWgPQwgPXyaKkLoQwJSGlFKUaBVLMmgWR0CYAlu/DcdpdX2UKGgGaAloD0MIY5y/CYUIA8CUhpRSlGgVSzJoFkdAmAGWqcVgyHV9lChoBmgJaA9DCKN4lbVNMQLAlIaUUpRoFUsyaBZHQJgHemEXcg11fZQoaAZoCWgPQwjoMF9egB0JwJSGlFKUaBVLMmgWR0CYBtRJEpiJdX2UKGgGaAloD0MIbosyG2RSEMCUhpRSlGgVSzJoFkdAmAYr+o99t3V9lChoBmgJaA9DCBd+cD517PG/lIaUUpRoFUsyaBZHQJgFZ0/4Zdh1fZQoaAZoCWgPQwjSx3xAoDP3v5SGlFKUaBVLMmgWR0CYC2sVLzwudX2UKGgGaAloD0MIm8sNhjqMD8CUhpRSlGgVSzJoFkdAmArFJ17pmnV9lChoBmgJaA9DCOVEuwopf/K/lIaUUpRoFUsyaBZHQJgKHWtlqah1fZQoaAZoCWgPQwi0Hykiw1ogwJSGlFKUaBVLMmgWR0CYCViXpnpTdX2UKGgGaAloD0MIBrzMsFEGEsCUhpRSlGgVSzJoFkdAmA9dYB/7SHV9lChoBmgJaA9DCO+usyH/zPq/lIaUUpRoFUsyaBZHQJgOt2Rq46R1fZQoaAZoCWgPQwimQjwSLy8CwJSGlFKUaBVLMmgWR0CYDg6+nIhhdX2UKGgGaAloD0MI+cCO/wLBCsCUhpRSlGgVSzJoFkdAmA1KZYxL03V9lChoBmgJaA9DCLkzEwznWhPAlIaUUpRoFUsyaBZHQJgTPrLQokR1fZQoaAZoCWgPQwigpwGDpE8MwJSGlFKUaBVLMmgWR0CYEpipNsWPdX2UKGgGaAloD0MImBk2yvrtCMCUhpRSlGgVSzJoFkdAmBHwhB7eEnV9lChoBmgJaA9DCGeZRSi2Au+/lIaUUpRoFUsyaBZHQJgRK606YE51fZQoaAZoCWgPQwiSA3Y1eQr8v5SGlFKUaBVLMmgWR0CYFfHVPN3XdX2UKGgGaAloD0MIsYuiBz4GEMCUhpRSlGgVSzJoFkdAmBVJhnanJnV9lChoBmgJaA9DCFUUr7K2qfu/lIaUUpRoFUsyaBZHQJgUn0163RZ1fZQoaAZoCWgPQwhJaTaPw+AQwJSGlFKUaBVLMmgWR0CYE9iyY5T7dX2UKGgGaAloD0MI7iWN0TrKCMCUhpRSlGgVSzJoFkdAmBhSZ0CA+nV9lChoBmgJaA9DCAq7KHrggw3AlIaUUpRoFUsyaBZHQJgXqgdwNsp1fZQoaAZoCWgPQwh5sMVun5UWwJSGlFKUaBVLMmgWR0CYFv/QBxPwdX2UKGgGaAloD0MIrpy9M9pKH8CUhpRSlGgVSzJoFkdAmBY5cTrVv3V9lChoBmgJaA9DCFCOAkTBrAPAlIaUUpRoFUsyaBZHQJgak7wKBup1fZQoaAZoCWgPQwhGXtbEAk8VwJSGlFKUaBVLMmgWR0CYGet6ol2NdX2UKGgGaAloD0MIT5KumXxzCcCUhpRSlGgVSzJoFkdAmBlBK6FuenV9lChoBmgJaA9DCKneGtgqAfu/lIaUUpRoFUsyaBZHQJgYepcX3xp1fZQoaAZoCWgPQwjxK9Zwkfv3v5SGlFKUaBVLMmgWR0CYHMGtZFG5dX2UKGgGaAloD0MIoz7JHTbR+L+UhpRSlGgVSzJoFkdAmBwZhfBvaXV9lChoBmgJaA9DCCLgEKrUrPm/lIaUUpRoFUsyaBZHQJgbb0SRKYl1fZQoaAZoCWgPQwjImLuWkO8AwJSGlFKUaBVLMmgWR0CYGqhkiD/VdX2UKGgGaAloD0MIeA5lqIrpCMCUhpRSlGgVSzJoFkdAmB774agmJHV9lChoBmgJaA9DCDsYsU8A5RPAlIaUUpRoFUsyaBZHQJgeU7ZFoct1fZQoaAZoCWgPQwg5JSAm4eINwJSGlFKUaBVLMmgWR0CYHalhgE2YdX2UKGgGaAloD0MIs5dtp60R7L+UhpRSlGgVSzJoFkdAmBzi0WuX/3V9lChoBmgJaA9DCKshcY+lDwPAlIaUUpRoFUsyaBZHQJghKbQTmGN1fZQoaAZoCWgPQwjQDOIDOx4UwJSGlFKUaBVLMmgWR0CYIIF7D2rXdX2UKGgGaAloD0MIesN95NaEAcCUhpRSlGgVSzJoFkdAmB/XAuZkTnV9lChoBmgJaA9DCDjAzHfwMwLAlIaUUpRoFUsyaBZHQJgfEF6iTMd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}