Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -3.
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -3.43 +/- 0.94
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a63b23ddc97abac87941b060643fe2ecb9430120d42ec04dbf56a0cd89e7de3
|
3 |
+
size 108039
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,12 +19,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[ 1.
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f468f3cb520>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f468f3bff80>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1687372986412976222,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5Y3gPlPEZDzxtw4/5Y3gPlPEZDzxtw4/5Y3gPlPEZDzxtw4/5Y3gPlPEZDzxtw4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApqYHvif/zr9wnrC/P1UOv3uWtD9fvcq/cHMFP+JcPT9d7dM/PEq+vqh78LtiVhK+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADljeA+U8RkPPG3Dj+3Wmk8kaOoOiHiFzvljeA+U8RkPPG3Dj+3Wmk8kaOoOiHiFzvljeA+U8RkPPG3Dj+3Wmk8kaOoOiHiFzvljeA+U8RkPPG3Dj+3Wmk8kaOoOiHiFzuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.43858257 0.01396282 0.5574942 ]\n [0.43858257 0.01396282 0.5574942 ]\n [0.43858257 0.01396282 0.5574942 ]\n [0.43858257 0.01396282 0.5574942 ]]",
|
38 |
+
"desired_goal": "[[-0.13247165 -1.6171616 -1.3798351 ]\n [-0.55598825 1.4108423 -1.5839041 ]\n [ 0.5212927 0.7396985 1.6556813 ]\n [-0.3716601 -0.00733896 -0.14290765]]",
|
39 |
+
"observation": "[[0.43858257 0.01396282 0.5574942 0.01424282 0.00128661 0.00231756]\n [0.43858257 0.01396282 0.5574942 0.01424282 0.00128661 0.00231756]\n [0.43858257 0.01396282 0.5574942 0.01424282 0.00128661 0.00231756]\n [0.43858257 0.01396282 0.5574942 0.01424282 0.00128661 0.00231756]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdExCPJSk8jzt4No9a35APMVJoj3FcIs+tqf1PO4x5b3Ndzg+HEsMPs3Q0713N0M9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.01185905 0.02961949 0.10687432]\n [ 0.01174889 0.07924227 0.27234474]\n [ 0.0299872 -0.11191164 0.1801445 ]\n [ 0.13700527 -0.1034256 0.04766032]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg/bq46HPB8CUhpRSlIwBbJRLMowBdJRHQKfX/BDXvph1fZQoaAZoCWgPQwhoeLMG76sAwJSGlFKUaBVLMmgWR0Cn18L4vexfdX2UKGgGaAloD0MI5+CZ0CRxB8CUhpRSlGgVSzJoFkdAp9eF/FzdUXV9lChoBmgJaA9DCDxrt11orgXAlIaUUpRoFUsyaBZHQKfXTfNRm9R1fZQoaAZoCWgPQwjqJcYy/ZIOwJSGlFKUaBVLMmgWR0Cn2RLPdEb6dX2UKGgGaAloD0MI0PBmDd4XC8CUhpRSlGgVSzJoFkdAp9jZssQNC3V9lChoBmgJaA9DCDl+qDRiBgTAlIaUUpRoFUsyaBZHQKfYnH5rP+p1fZQoaAZoCWgPQwgbhLndyy0RwJSGlFKUaBVLMmgWR0Cn2GQ04zacdX2UKGgGaAloD0MIp1mg3SGFC8CUhpRSlGgVSzJoFkdAp9osbgjyF3V9lChoBmgJaA9DCCLeOv922QXAlIaUUpRoFUsyaBZHQKfZ8wSJ0nx1fZQoaAZoCWgPQwj/QLlt36P5v5SGlFKUaBVLMmgWR0Cn2bXLV4HHdX2UKGgGaAloD0MIdaxSeqa3FMCUhpRSlGgVSzJoFkdAp9l9jkMkQnV9lChoBmgJaA9DCC8Zx0j2yAzAlIaUUpRoFUsyaBZHQKfbW3tKIzp1fZQoaAZoCWgPQwjIBz2bVf8PwJSGlFKUaBVLMmgWR0Cn2yI7Njb0dX2UKGgGaAloD0MIbCV0l8QZ9b+UhpRSlGgVSzJoFkdAp9rk/pt78nV9lChoBmgJaA9DCPs8RnnmJRHAlIaUUpRoFUsyaBZHQKfarM2WIGh1fZQoaAZoCWgPQwhUGjGzz+P5v5SGlFKUaBVLMmgWR0Cn3H0Mw1zidX2UKGgGaAloD0MIo5Ol1vsNBcCUhpRSlGgVSzJoFkdAp9xDqv/za3V9lChoBmgJaA9DCE/nilJC8APAlIaUUpRoFUsyaBZHQKfcBoakyk91fZQoaAZoCWgPQwhHH/MBgS4FwJSGlFKUaBVLMmgWR0Cn285SWJJodX2UKGgGaAloD0MI16IFaFvtCsCUhpRSlGgVSzJoFkdAp924lIEr5XV9lChoBmgJaA9DCG1TPC6qhQjAlIaUUpRoFUsyaBZHQKfdf0Bfa6B1fZQoaAZoCWgPQwj5ZMVwdYAKwJSGlFKUaBVLMmgWR0Cn3UHrpqyodX2UKGgGaAloD0MIvqHw2TqYDcCUhpRSlGgVSzJoFkdAp90KTnq3VnV9lChoBmgJaA9DCJiJIqRup/y/lIaUUpRoFUsyaBZHQKffPDpkf9x1fZQoaAZoCWgPQwiwO9154jn0v5SGlFKUaBVLMmgWR0Cn3wOcUdq+dX2UKGgGaAloD0MIYOXQItuZBsCUhpRSlGgVSzJoFkdAp97HPLPldXV9lChoBmgJaA9DCJDAH37+e/6/lIaUUpRoFUsyaBZHQKfej/aQFLZ1fZQoaAZoCWgPQwgq4J7nT5vqv5SGlFKUaBVLMmgWR0Cn4Qv5pJwsdX2UKGgGaAloD0MILgPOUrK8A8CUhpRSlGgVSzJoFkdAp+DTk+5e7nV9lChoBmgJaA9DCH3PSIRGcPq/lIaUUpRoFUsyaBZHQKfgl3h4t6J1fZQoaAZoCWgPQwi4A3XKo7sAwJSGlFKUaBVLMmgWR0Cn4GAZKnNxdX2UKGgGaAloD0MIehhanZyh9b+UhpRSlGgVSzJoFkdAp+LhC2MKkXV9lChoBmgJaA9DCKmG/Z5YRw/AlIaUUpRoFUsyaBZHQKfiqMbWEsd1fZQoaAZoCWgPQwgLtDukGEAKwJSGlFKUaBVLMmgWR0Cn4mx15jYqdX2UKGgGaAloD0MIYp6VtOL7DcCUhpRSlGgVSzJoFkdAp+I078vVVnV9lChoBmgJaA9DCJC7CFOUiw3AlIaUUpRoFUsyaBZHQKfkssDGLk11fZQoaAZoCWgPQwggls0ckpr+v5SGlFKUaBVLMmgWR0Cn5HpEQXhwdX2UKGgGaAloD0MIYVCm0eQi8r+UhpRSlGgVSzJoFkdAp+Q9foicG3V9lChoBmgJaA9DCANDVrd6bgPAlIaUUpRoFUsyaBZHQKfkBgTAWSF1fZQoaAZoCWgPQwiqEI/Ey5Pzv5SGlFKUaBVLMmgWR0Cn5q6JZW7wdX2UKGgGaAloD0MIdO/hkuOO/b+UhpRSlGgVSzJoFkdAp+Z2VZ9uxnV9lChoBmgJaA9DCJq2f2Wlife/lIaUUpRoFUsyaBZHQKfmOkOZssR1fZQoaAZoCWgPQwhW8NsQ4/UPwJSGlFKUaBVLMmgWR0Cn5gNAs053dX2UKGgGaAloD0MI3dPVHYtNB8CUhpRSlGgVSzJoFkdAp+iwWi1zAHV9lChoBmgJaA9DCGUcI9kjVAbAlIaUUpRoFUsyaBZHQKfoeB/Zuht1fZQoaAZoCWgPQwgqx2Rx/xH5v5SGlFKUaBVLMmgWR0Cn6DwAuIykdX2UKGgGaAloD0MIECBDxw4qEsCUhpRSlGgVSzJoFkdAp+gEoDxLCnV9lChoBmgJaA9DCNvdA3RfzgTAlIaUUpRoFUsyaBZHQKfqjjNpudh1fZQoaAZoCWgPQwhe9BWkGesEwJSGlFKUaBVLMmgWR0Cn6lTguRLcdX2UKGgGaAloD0MIkElGzsJ+CcCUhpRSlGgVSzJoFkdAp+oXokiUxHV9lChoBmgJaA9DCAJ+jSRBeP6/lIaUUpRoFUsyaBZHQKfp35IH1OF1fZQoaAZoCWgPQwhC6+HLRMESwJSGlFKUaBVLMmgWR0Cn661RUFSsdX2UKGgGaAloD0MIaCEBo8v7BsCUhpRSlGgVSzJoFkdAp+t0FyJbdXV9lChoBmgJaA9DCI5zm3CvTBDAlIaUUpRoFUsyaBZHQKfrNteD3/R1fZQoaAZoCWgPQwgnTYOieaAOwJSGlFKUaBVLMmgWR0Cn6v6PCEYgdX2UKGgGaAloD0MIiiE5mbgVDsCUhpRSlGgVSzJoFkdAp+zEWKuSwHV9lChoBmgJaA9DCMb83NCUfQLAlIaUUpRoFUsyaBZHQKfsiwV0tAd1fZQoaAZoCWgPQwjNzMzMzAwDwJSGlFKUaBVLMmgWR0Cn7E3MyJsPdX2UKGgGaAloD0MInMJKBRW1DsCUhpRSlGgVSzJoFkdAp+wVnscABHV9lChoBmgJaA9DCHCxogbTEAXAlIaUUpRoFUsyaBZHQKft0wD/2kB1fZQoaAZoCWgPQwhz9s5oq1L2v5SGlFKUaBVLMmgWR0Cn7ZmrKeTWdX2UKGgGaAloD0MIX9TuVwH+/L+UhpRSlGgVSzJoFkdAp+1cTlDF63V9lChoBmgJaA9DCCGQSxx5QArAlIaUUpRoFUsyaBZHQKftJDG96C11fZQoaAZoCWgPQwjGMv0S8TYLwJSGlFKUaBVLMmgWR0Cn7uNYKYzBdX2UKGgGaAloD0MIo1nZPuQNEMCUhpRSlGgVSzJoFkdAp+6qGtZFHHV9lChoBmgJaA9DCPeQ8L2/AQ/AlIaUUpRoFUsyaBZHQKfubKfWcz91fZQoaAZoCWgPQwj2C3bDtgUQwJSGlFKUaBVLMmgWR0Cn7jSBTXJ6dX2UKGgGaAloD0MIhAzk2eV7AcCUhpRSlGgVSzJoFkdAp+/0WEbo83V9lChoBmgJaA9DCNjTDn9NdgDAlIaUUpRoFUsyaBZHQKfvuxs2vSt1fZQoaAZoCWgPQwhNh07Pu7EKwJSGlFKUaBVLMmgWR0Cn733ZXdTHdX2UKGgGaAloD0MIEHo2qz53DMCUhpRSlGgVSzJoFkdAp+9FpsXSB3V9lChoBmgJaA9DCLQEGQEVDvW/lIaUUpRoFUsyaBZHQKfxAjfvWpZ1fZQoaAZoCWgPQwiiRbbz/VTzv5SGlFKUaBVLMmgWR0Cn8MjXFtKqdX2UKGgGaAloD0MIOiS1UDJZB8CUhpRSlGgVSzJoFkdAp/CLsKLKm3V9lChoBmgJaA9DCBPyQc9m9QjAlIaUUpRoFUsyaBZHQKfwU4G2TgV1fZQoaAZoCWgPQwgcRdYaSi0BwJSGlFKUaBVLMmgWR0Cn8f+PJaJRdX2UKGgGaAloD0MIU14robtkDMCUhpRSlGgVSzJoFkdAp/HGD3/PxHV9lChoBmgJaA9DCLqGGRpPRPe/lIaUUpRoFUsyaBZHQKfxiORT0g91fZQoaAZoCWgPQwgOEqJ8QSsJwJSGlFKUaBVLMmgWR0Cn8VCOvMbFdX2UKGgGaAloD0MIcqd0sP6PB8CUhpRSlGgVSzJoFkdAp/MDasZHeHV9lChoBmgJaA9DCPyrx32rtQbAlIaUUpRoFUsyaBZHQKfyyfxtpEh1fZQoaAZoCWgPQwiduYeE710IwJSGlFKUaBVLMmgWR0Cn8ozTfBN3dX2UKGgGaAloD0MIUzwuqkVE9r+UhpRSlGgVSzJoFkdAp/JUdRzij3V9lChoBmgJaA9DCD9VhQZi2QLAlIaUUpRoFUsyaBZHQKf0GKu0TlF1fZQoaAZoCWgPQwgogjgPJ7ARwJSGlFKUaBVLMmgWR0Cn89+S8rZrdX2UKGgGaAloD0MIk4ychT0t+7+UhpRSlGgVSzJoFkdAp/Oiguh9LHV9lChoBmgJaA9DCKkz95DwvQPAlIaUUpRoFUsyaBZHQKfzajlgc951fZQoaAZoCWgPQwiyYyMQr6v1v5SGlFKUaBVLMmgWR0Cn9VvcafjCdX2UKGgGaAloD0MII7w9CAEJEsCUhpRSlGgVSzJoFkdAp/Uir3j+73V9lChoBmgJaA9DCIknu5nRjw7AlIaUUpRoFUsyaBZHQKf05XJYDDF1fZQoaAZoCWgPQwiy1eWUgNgJwJSGlFKUaBVLMmgWR0Cn9K1W0Z3tdX2UKGgGaAloD0MIgjtQpzwaAsCUhpRSlGgVSzJoFkdAp/aG/1xsEnV9lChoBmgJaA9DCEHWU6uvLv6/lIaUUpRoFUsyaBZHQKf2TdbgTAZ1fZQoaAZoCWgPQwj5LM+DuxMAwJSGlFKUaBVLMmgWR0Cn9hCnP3SKdX2UKGgGaAloD0MIvTRFgNO797+UhpRSlGgVSzJoFkdAp/XYgV45cXV9lChoBmgJaA9DCJiKjXkdEQ7AlIaUUpRoFUsyaBZHQKf3lDdgv111fZQoaAZoCWgPQwh4t7JEZzkBwJSGlFKUaBVLMmgWR0Cn91s495hSdX2UKGgGaAloD0MIsP86N20GA8CUhpRSlGgVSzJoFkdAp/ced3B55nV9lChoBmgJaA9DCKjF4GHatxTAlIaUUpRoFUsyaBZHQKf25krf+CN1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 50000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d065afbdca1b88333b66a5d698321ca79ca41c2db27760cedc93eb4040d9be3e
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:292653e9344df9570c4b9f0dbcb62e481698ba5b7b6940740070bf2f47f80354
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f29a42bb880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f29a42bd100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687210050843989998, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKVzOPkZUmzvH6tg+KVzOPkZUmzvH6tg+KVzOPkZUmzvH6tg+KVzOPkZUmzvH6tg+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA90K+P37hZb+wYwy/YrSiPtGtm79GLdC+vcNMP9qhR77+YQc/IWcuP0AFET+U68s/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAApXM4+RlSbO8fq2D4aDHG7YijZuvG5wbspXM4+RlSbO8fq2D4aDHG7YijZuvG5wbspXM4+RlSbO8fq2D4aDHG7YijZuvG5wbspXM4+RlSbO8fq2D4aDHG7YijZuvG5wbuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40304688 0.00474027 0.4236662 ]\n [0.40304688 0.00474027 0.4236662 ]\n [0.40304688 0.00474027 0.4236662 ]\n [0.40304688 0.00474027 0.4236662 ]]", "desired_goal": "[[ 1.4864186 -0.897972 -0.5483961 ]\n [ 0.31778246 -1.216242 -0.4065954 ]\n [ 0.7998617 -0.19495335 0.528839 ]\n [ 0.6812611 0.56648636 1.5931268 ]]", "observation": "[[ 0.40304688 0.00474027 0.4236662 -0.00367809 -0.00165678 -0.00591206]\n [ 0.40304688 0.00474027 0.4236662 -0.00367809 -0.00165678 -0.00591206]\n [ 0.40304688 0.00474027 0.4236662 -0.00367809 -0.00165678 -0.00591206]\n [ 0.40304688 0.00474027 0.4236662 -0.00367809 -0.00165678 -0.00591206]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAj9A9vZ0a2D3D8Ss9swkXvkWk9LxVizQ+Bx8Ivf8Y8z2eLmk9B9hwPBaaOD2c73I+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04634148 0.10551951 0.04197861]\n [-0.14749794 -0.02986349 0.17631276]\n [-0.03323271 0.11870002 0.05692922]\n [ 0.01469994 0.04506882 0.23724216]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgbG+gcldF8CUhpRSlIwBbJRLMowBdJRHQJp6SfHxSYR1fZQoaAZoCWgPQwh3LSEf9AwEwJSGlFKUaBVLMmgWR0Caec7PppvhdX2UKGgGaAloD0MI6EoEqn8AFMCUhpRSlGgVSzJoFkdAmnlRkupS8HV9lChoBmgJaA9DCGluhbAaC/K/lIaUUpRoFUsyaBZHQJp4yP2f0291fZQoaAZoCWgPQwjQ8dHijKH6v5SGlFKUaBVLMmgWR0CafLgCwKSgdX2UKGgGaAloD0MIlIRE2sZfAsCUhpRSlGgVSzJoFkdAmnw9CRfWtnV9lChoBmgJaA9DCOurqwK1+ADAlIaUUpRoFUsyaBZHQJp7wALiMpB1fZQoaAZoCWgPQwhCIQIOoQoQwJSGlFKUaBVLMmgWR0Caezd+XqqwdX2UKGgGaAloD0MI4jrGFRfHDMCUhpRSlGgVSzJoFkdAmn8LC79Q43V9lChoBmgJaA9DCGHhJM0fAxDAlIaUUpRoFUsyaBZHQJp+j8TBZZB1fZQoaAZoCWgPQwigF+5cGEkFwJSGlFKUaBVLMmgWR0CafhI5o4+9dX2UKGgGaAloD0MImUf+YOCZA8CUhpRSlGgVSzJoFkdAmn2KFAVwgnV9lChoBmgJaA9DCNBf6BGj1xTAlIaUUpRoFUsyaBZHQJqBYmReTmp1fZQoaAZoCWgPQwiAD167tEEUwJSGlFKUaBVLMmgWR0CagOc7yQPqdX2UKGgGaAloD0MIVg4tsp3PEsCUhpRSlGgVSzJoFkdAmoBp0KZ2IXV9lChoBmgJaA9DCMdI9gg1wxnAlIaUUpRoFUsyaBZHQJp/4SDh99d1fZQoaAZoCWgPQwh2qRH6maoSwJSGlFKUaBVLMmgWR0Cag57f51vEdX2UKGgGaAloD0MIhiFy+nq+C8CUhpRSlGgVSzJoFkdAmoMjX4CZGHV9lChoBmgJaA9DCJULlX8tfxPAlIaUUpRoFUsyaBZHQJqCpfhMrVh1fZQoaAZoCWgPQwjYSuguiQMQwJSGlFKUaBVLMmgWR0Cagh0wJw85dX2UKGgGaAloD0MIKNU+HY8pGMCUhpRSlGgVSzJoFkdAmoXrmlqJuXV9lChoBmgJaA9DCMqK4eoAuBXAlIaUUpRoFUsyaBZHQJqFcOOKfnR1fZQoaAZoCWgPQwjeq1Ym/LIOwJSGlFKUaBVLMmgWR0CahPOqebuudX2UKGgGaAloD0MIPiXnxB5aEcCUhpRSlGgVSzJoFkdAmoRrD/EOy3V9lChoBmgJaA9DCAWGrG71nAXAlIaUUpRoFUsyaBZHQJqH/nLaEjB1fZQoaAZoCWgPQwgo7+NojlwYwJSGlFKUaBVLMmgWR0Cah4K5CngpdX2UKGgGaAloD0MIq5Z0lIPZF8CUhpRSlGgVSzJoFkdAmocFFH8TBnV9lChoBmgJaA9DCHyeP21UhxPAlIaUUpRoFUsyaBZHQJqGe+23KCB1fZQoaAZoCWgPQwgAi/z6IXYRwJSGlFKUaBVLMmgWR0CaisT4L1EmdX2UKGgGaAloD0MI51JcVfZdEcCUhpRSlGgVSzJoFkdAmopLcTJyQ3V9lChoBmgJaA9DCPgZFw6EpAfAlIaUUpRoFUsyaBZHQJqJz+4smOV1fZQoaAZoCWgPQwgXoG0168wJwJSGlFKUaBVLMmgWR0CaiU4SpR4ydX2UKGgGaAloD0MI4dOcvMjEEsCUhpRSlGgVSzJoFkdAmo599Dx9X3V9lChoBmgJaA9DCEMewY2UHRjAlIaUUpRoFUsyaBZHQJqOBGd7OVx1fZQoaAZoCWgPQwilEMgljlwKwJSGlFKUaBVLMmgWR0CajYhr30wrdX2UKGgGaAloD0MIR1fp7jo7FMCUhpRSlGgVSzJoFkdAmo0BnanJk3V9lChoBmgJaA9DCEjcY+lDVw7AlIaUUpRoFUsyaBZHQJqSJIiC8OF1fZQoaAZoCWgPQwg2d/S/XEsPwJSGlFKUaBVLMmgWR0Cakar/bTMJdX2UKGgGaAloD0MIhSaJJeXuEMCUhpRSlGgVSzJoFkdAmpEvfO2RaHV9lChoBmgJaA9DCPKzkeumNBDAlIaUUpRoFUsyaBZHQJqQqTX8O091fZQoaAZoCWgPQwg2Wg70UDsAwJSGlFKUaBVLMmgWR0Calg0CA+Y/dX2UKGgGaAloD0MIcEOM17xaF8CUhpRSlGgVSzJoFkdAmpWT5TIeYHV9lChoBmgJaA9DCLde04OCohnAlIaUUpRoFUsyaBZHQJqVF/nW8RN1fZQoaAZoCWgPQwikx+9t+pMQwJSGlFKUaBVLMmgWR0CalJFefI0ZdX2UKGgGaAloD0MIMQqCx7cXD8CUhpRSlGgVSzJoFkdAmpoe0ojOcHV9lChoBmgJaA9DCMjrwaT4+A/AlIaUUpRoFUsyaBZHQJqZpZjhDPZ1fZQoaAZoCWgPQwiXOPJAZNECwJSGlFKUaBVLMmgWR0CamSq0MPSVdX2UKGgGaAloD0MIteGwNPBjCMCUhpRSlGgVSzJoFkdAmpikU0vXb3V9lChoBmgJaA9DCDs6rkZ2NRPAlIaUUpRoFUsyaBZHQJqeU/Vy3kR1fZQoaAZoCWgPQwgJpwUv+ooWwJSGlFKUaBVLMmgWR0CandtmL9/CdX2UKGgGaAloD0MI/0KPGD1XHMCUhpRSlGgVSzJoFkdAmp1gnYxtYXV9lChoBmgJaA9DCB+fkJ230QHAlIaUUpRoFUsyaBZHQJqc2lEZzgd1fZQoaAZoCWgPQwhZ+Ppal3oQwJSGlFKUaBVLMmgWR0CaomGyX2M9dX2UKGgGaAloD0MI9+Y3TDS4E8CUhpRSlGgVSzJoFkdAmqHoEfT1CnV9lChoBmgJaA9DCGGJB5RNGQ3AlIaUUpRoFUsyaBZHQJqhbCDVYp51fZQoaAZoCWgPQwiVKeYg6PgUwJSGlFKUaBVLMmgWR0CaoOVdX1aodX2UKGgGaAloD0MIcZAQ5QtiIcCUhpRSlGgVSzJoFkdAmqTkuL74z3V9lChoBmgJaA9DCIEk7NtJNBHAlIaUUpRoFUsyaBZHQJqkaX1J17p1fZQoaAZoCWgPQwhAFMyYgkUcwJSGlFKUaBVLMmgWR0Cao+xfOUt7dX2UKGgGaAloD0MIvRqgNNS4FcCUhpRSlGgVSzJoFkdAmqNjposZpHV9lChoBmgJaA9DCEPmyqDaEBbAlIaUUpRoFUsyaBZHQJqnUv8IiTt1fZQoaAZoCWgPQwhJvady2rMhwJSGlFKUaBVLMmgWR0Captf+CK77dX2UKGgGaAloD0MIyAkTRrNiGsCUhpRSlGgVSzJoFkdAmqZazJIUanV9lChoBmgJaA9DCGb35GGhdg7AlIaUUpRoFUsyaBZHQJql0hLXcxl1fZQoaAZoCWgPQwhGQfD49v4ewJSGlFKUaBVLMmgWR0CaqbZcs189dX2UKGgGaAloD0MITWa8rfS6CsCUhpRSlGgVSzJoFkdAmqk7VWjoIXV9lChoBmgJaA9DCCsTfqmfhx7AlIaUUpRoFUsyaBZHQJqovlZHNHJ1fZQoaAZoCWgPQwggJuFCHlErwJSGlFKUaBVLMmgWR0CaqDYDklu4dX2UKGgGaAloD0MIh6OrdHd9FMCUhpRSlGgVSzJoFkdAmqwaISDh+HV9lChoBmgJaA9DCGO2ZFWEmxrAlIaUUpRoFUsyaBZHQJqrn4TK1Xx1fZQoaAZoCWgPQwiln3B2a3kFwJSGlFKUaBVLMmgWR0CaqyKW9lErdX2UKGgGaAloD0MIIlD9g0gGBcCUhpRSlGgVSzJoFkdAmqqasp5NXnV9lChoBmgJaA9DCJT7HYoCXR7AlIaUUpRoFUsyaBZHQJqughq0tyx1fZQoaAZoCWgPQwjJ6ev5mgUCwJSGlFKUaBVLMmgWR0CargbvgFX8dX2UKGgGaAloD0MItqD3xhCQEsCUhpRSlGgVSzJoFkdAmq2J/wy6+XV9lChoBmgJaA9DCBWqm4u/bQjAlIaUUpRoFUsyaBZHQJqtAWl/H5t1fZQoaAZoCWgPQwiLNzKP/CEIwJSGlFKUaBVLMmgWR0CasNbQ1JlKdX2UKGgGaAloD0MILjwvFRtDH8CUhpRSlGgVSzJoFkdAmrBbrPdEcHV9lChoBmgJaA9DCF2pZ0EofxzAlIaUUpRoFUsyaBZHQJqv3ofSx7l1fZQoaAZoCWgPQwiKrgs/OF/yv5SGlFKUaBVLMmgWR0Car1Y+0PYndX2UKGgGaAloD0MII9qOqbtyDcCUhpRSlGgVSzJoFkdAmrM2mtQsPXV9lChoBmgJaA9DCO/Lme0K3QXAlIaUUpRoFUsyaBZHQJqyu3QUpNN1fZQoaAZoCWgPQwj5LM+Du5MNwJSGlFKUaBVLMmgWR0Casj5Dqnm8dX2UKGgGaAloD0MIGAgCZOj4CsCUhpRSlGgVSzJoFkdAmrG1p48lonV9lChoBmgJaA9DCAaDa+7ofwbAlIaUUpRoFUsyaBZHQJq1edsi0OV1fZQoaAZoCWgPQwg+INCZtCkRwJSGlFKUaBVLMmgWR0CatP8VHnU2dX2UKGgGaAloD0MIJjrLLEJRCcCUhpRSlGgVSzJoFkdAmrSBzq8lHHV9lChoBmgJaA9DCGouNxjq0BDAlIaUUpRoFUsyaBZHQJqz+SA6Mit1fZQoaAZoCWgPQwhcV8wIb58awJSGlFKUaBVLMmgWR0Cat9i/fwZwdX2UKGgGaAloD0MIABqlS//yA8CUhpRSlGgVSzJoFkdAmrddlum78XV9lChoBmgJaA9DCJxtbkxPmBLAlIaUUpRoFUsyaBZHQJq24FUyYXx1fZQoaAZoCWgPQwic+6vHfesewJSGlFKUaBVLMmgWR0CatlfChvitdX2UKGgGaAloD0MIDD84nzrmEsCUhpRSlGgVSzJoFkdAmrofWxyGSXV9lChoBmgJaA9DCKQbYVERZxDAlIaUUpRoFUsyaBZHQJq5pCeEqUh1fZQoaAZoCWgPQwhwJqYLsdoIwJSGlFKUaBVLMmgWR0CauSbe/Ho6dX2UKGgGaAloD0MI3dPVHYvNDsCUhpRSlGgVSzJoFkdAmrieUQkHEHV9lChoBmgJaA9DCLTonQq4xwbAlIaUUpRoFUsyaBZHQJq8djVhCt11fZQoaAZoCWgPQwjT2jS21+IGwJSGlFKUaBVLMmgWR0Cau/r6LwWndX2UKGgGaAloD0MIL8N/uoGCB8CUhpRSlGgVSzJoFkdAmrt9wBHTZ3V9lChoBmgJaA9DCGYTYFj+bBPAlIaUUpRoFUsyaBZHQJq69QEZBLR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f468f3cb520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f468f3bff80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687372986412976222, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5Y3gPlPEZDzxtw4/5Y3gPlPEZDzxtw4/5Y3gPlPEZDzxtw4/5Y3gPlPEZDzxtw4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApqYHvif/zr9wnrC/P1UOv3uWtD9fvcq/cHMFP+JcPT9d7dM/PEq+vqh78LtiVhK+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADljeA+U8RkPPG3Dj+3Wmk8kaOoOiHiFzvljeA+U8RkPPG3Dj+3Wmk8kaOoOiHiFzvljeA+U8RkPPG3Dj+3Wmk8kaOoOiHiFzvljeA+U8RkPPG3Dj+3Wmk8kaOoOiHiFzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43858257 0.01396282 0.5574942 ]\n [0.43858257 0.01396282 0.5574942 ]\n [0.43858257 0.01396282 0.5574942 ]\n [0.43858257 0.01396282 0.5574942 ]]", "desired_goal": "[[-0.13247165 -1.6171616 -1.3798351 ]\n [-0.55598825 1.4108423 -1.5839041 ]\n [ 0.5212927 0.7396985 1.6556813 ]\n [-0.3716601 -0.00733896 -0.14290765]]", "observation": "[[0.43858257 0.01396282 0.5574942 0.01424282 0.00128661 0.00231756]\n [0.43858257 0.01396282 0.5574942 0.01424282 0.00128661 0.00231756]\n [0.43858257 0.01396282 0.5574942 0.01424282 0.00128661 0.00231756]\n [0.43858257 0.01396282 0.5574942 0.01424282 0.00128661 0.00231756]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdExCPJSk8jzt4No9a35APMVJoj3FcIs+tqf1PO4x5b3Ndzg+HEsMPs3Q0713N0M9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01185905 0.02961949 0.10687432]\n [ 0.01174889 0.07924227 0.27234474]\n [ 0.0299872 -0.11191164 0.1801445 ]\n [ 0.13700527 -0.1034256 0.04766032]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg/bq46HPB8CUhpRSlIwBbJRLMowBdJRHQKfX/BDXvph1fZQoaAZoCWgPQwhoeLMG76sAwJSGlFKUaBVLMmgWR0Cn18L4vexfdX2UKGgGaAloD0MI5+CZ0CRxB8CUhpRSlGgVSzJoFkdAp9eF/FzdUXV9lChoBmgJaA9DCDxrt11orgXAlIaUUpRoFUsyaBZHQKfXTfNRm9R1fZQoaAZoCWgPQwjqJcYy/ZIOwJSGlFKUaBVLMmgWR0Cn2RLPdEb6dX2UKGgGaAloD0MI0PBmDd4XC8CUhpRSlGgVSzJoFkdAp9jZssQNC3V9lChoBmgJaA9DCDl+qDRiBgTAlIaUUpRoFUsyaBZHQKfYnH5rP+p1fZQoaAZoCWgPQwgbhLndyy0RwJSGlFKUaBVLMmgWR0Cn2GQ04zacdX2UKGgGaAloD0MIp1mg3SGFC8CUhpRSlGgVSzJoFkdAp9osbgjyF3V9lChoBmgJaA9DCCLeOv922QXAlIaUUpRoFUsyaBZHQKfZ8wSJ0nx1fZQoaAZoCWgPQwj/QLlt36P5v5SGlFKUaBVLMmgWR0Cn2bXLV4HHdX2UKGgGaAloD0MIdaxSeqa3FMCUhpRSlGgVSzJoFkdAp9l9jkMkQnV9lChoBmgJaA9DCC8Zx0j2yAzAlIaUUpRoFUsyaBZHQKfbW3tKIzp1fZQoaAZoCWgPQwjIBz2bVf8PwJSGlFKUaBVLMmgWR0Cn2yI7Njb0dX2UKGgGaAloD0MIbCV0l8QZ9b+UhpRSlGgVSzJoFkdAp9rk/pt78nV9lChoBmgJaA9DCPs8RnnmJRHAlIaUUpRoFUsyaBZHQKfarM2WIGh1fZQoaAZoCWgPQwhUGjGzz+P5v5SGlFKUaBVLMmgWR0Cn3H0Mw1zidX2UKGgGaAloD0MIo5Ol1vsNBcCUhpRSlGgVSzJoFkdAp9xDqv/za3V9lChoBmgJaA9DCE/nilJC8APAlIaUUpRoFUsyaBZHQKfcBoakyk91fZQoaAZoCWgPQwhHH/MBgS4FwJSGlFKUaBVLMmgWR0Cn285SWJJodX2UKGgGaAloD0MI16IFaFvtCsCUhpRSlGgVSzJoFkdAp924lIEr5XV9lChoBmgJaA9DCG1TPC6qhQjAlIaUUpRoFUsyaBZHQKfdf0Bfa6B1fZQoaAZoCWgPQwj5ZMVwdYAKwJSGlFKUaBVLMmgWR0Cn3UHrpqyodX2UKGgGaAloD0MIvqHw2TqYDcCUhpRSlGgVSzJoFkdAp90KTnq3VnV9lChoBmgJaA9DCJiJIqRup/y/lIaUUpRoFUsyaBZHQKffPDpkf9x1fZQoaAZoCWgPQwiwO9154jn0v5SGlFKUaBVLMmgWR0Cn3wOcUdq+dX2UKGgGaAloD0MIYOXQItuZBsCUhpRSlGgVSzJoFkdAp97HPLPldXV9lChoBmgJaA9DCJDAH37+e/6/lIaUUpRoFUsyaBZHQKfej/aQFLZ1fZQoaAZoCWgPQwgq4J7nT5vqv5SGlFKUaBVLMmgWR0Cn4Qv5pJwsdX2UKGgGaAloD0MILgPOUrK8A8CUhpRSlGgVSzJoFkdAp+DTk+5e7nV9lChoBmgJaA9DCH3PSIRGcPq/lIaUUpRoFUsyaBZHQKfgl3h4t6J1fZQoaAZoCWgPQwi4A3XKo7sAwJSGlFKUaBVLMmgWR0Cn4GAZKnNxdX2UKGgGaAloD0MIehhanZyh9b+UhpRSlGgVSzJoFkdAp+LhC2MKkXV9lChoBmgJaA9DCKmG/Z5YRw/AlIaUUpRoFUsyaBZHQKfiqMbWEsd1fZQoaAZoCWgPQwgLtDukGEAKwJSGlFKUaBVLMmgWR0Cn4mx15jYqdX2UKGgGaAloD0MIYp6VtOL7DcCUhpRSlGgVSzJoFkdAp+I078vVVnV9lChoBmgJaA9DCJC7CFOUiw3AlIaUUpRoFUsyaBZHQKfkssDGLk11fZQoaAZoCWgPQwggls0ckpr+v5SGlFKUaBVLMmgWR0Cn5HpEQXhwdX2UKGgGaAloD0MIYVCm0eQi8r+UhpRSlGgVSzJoFkdAp+Q9foicG3V9lChoBmgJaA9DCANDVrd6bgPAlIaUUpRoFUsyaBZHQKfkBgTAWSF1fZQoaAZoCWgPQwiqEI/Ey5Pzv5SGlFKUaBVLMmgWR0Cn5q6JZW7wdX2UKGgGaAloD0MIdO/hkuOO/b+UhpRSlGgVSzJoFkdAp+Z2VZ9uxnV9lChoBmgJaA9DCJq2f2Wlife/lIaUUpRoFUsyaBZHQKfmOkOZssR1fZQoaAZoCWgPQwhW8NsQ4/UPwJSGlFKUaBVLMmgWR0Cn5gNAs053dX2UKGgGaAloD0MI3dPVHYtNB8CUhpRSlGgVSzJoFkdAp+iwWi1zAHV9lChoBmgJaA9DCGUcI9kjVAbAlIaUUpRoFUsyaBZHQKfoeB/Zuht1fZQoaAZoCWgPQwgqx2Rx/xH5v5SGlFKUaBVLMmgWR0Cn6DwAuIykdX2UKGgGaAloD0MIECBDxw4qEsCUhpRSlGgVSzJoFkdAp+gEoDxLCnV9lChoBmgJaA9DCNvdA3RfzgTAlIaUUpRoFUsyaBZHQKfqjjNpudh1fZQoaAZoCWgPQwhe9BWkGesEwJSGlFKUaBVLMmgWR0Cn6lTguRLcdX2UKGgGaAloD0MIkElGzsJ+CcCUhpRSlGgVSzJoFkdAp+oXokiUxHV9lChoBmgJaA9DCAJ+jSRBeP6/lIaUUpRoFUsyaBZHQKfp35IH1OF1fZQoaAZoCWgPQwhC6+HLRMESwJSGlFKUaBVLMmgWR0Cn661RUFSsdX2UKGgGaAloD0MIaCEBo8v7BsCUhpRSlGgVSzJoFkdAp+t0FyJbdXV9lChoBmgJaA9DCI5zm3CvTBDAlIaUUpRoFUsyaBZHQKfrNteD3/R1fZQoaAZoCWgPQwgnTYOieaAOwJSGlFKUaBVLMmgWR0Cn6v6PCEYgdX2UKGgGaAloD0MIiiE5mbgVDsCUhpRSlGgVSzJoFkdAp+zEWKuSwHV9lChoBmgJaA9DCMb83NCUfQLAlIaUUpRoFUsyaBZHQKfsiwV0tAd1fZQoaAZoCWgPQwjNzMzMzAwDwJSGlFKUaBVLMmgWR0Cn7E3MyJsPdX2UKGgGaAloD0MInMJKBRW1DsCUhpRSlGgVSzJoFkdAp+wVnscABHV9lChoBmgJaA9DCHCxogbTEAXAlIaUUpRoFUsyaBZHQKft0wD/2kB1fZQoaAZoCWgPQwhz9s5oq1L2v5SGlFKUaBVLMmgWR0Cn7ZmrKeTWdX2UKGgGaAloD0MIX9TuVwH+/L+UhpRSlGgVSzJoFkdAp+1cTlDF63V9lChoBmgJaA9DCCGQSxx5QArAlIaUUpRoFUsyaBZHQKftJDG96C11fZQoaAZoCWgPQwjGMv0S8TYLwJSGlFKUaBVLMmgWR0Cn7uNYKYzBdX2UKGgGaAloD0MIo1nZPuQNEMCUhpRSlGgVSzJoFkdAp+6qGtZFHHV9lChoBmgJaA9DCPeQ8L2/AQ/AlIaUUpRoFUsyaBZHQKfubKfWcz91fZQoaAZoCWgPQwj2C3bDtgUQwJSGlFKUaBVLMmgWR0Cn7jSBTXJ6dX2UKGgGaAloD0MIhAzk2eV7AcCUhpRSlGgVSzJoFkdAp+/0WEbo83V9lChoBmgJaA9DCNjTDn9NdgDAlIaUUpRoFUsyaBZHQKfvuxs2vSt1fZQoaAZoCWgPQwhNh07Pu7EKwJSGlFKUaBVLMmgWR0Cn733ZXdTHdX2UKGgGaAloD0MIEHo2qz53DMCUhpRSlGgVSzJoFkdAp+9FpsXSB3V9lChoBmgJaA9DCLQEGQEVDvW/lIaUUpRoFUsyaBZHQKfxAjfvWpZ1fZQoaAZoCWgPQwiiRbbz/VTzv5SGlFKUaBVLMmgWR0Cn8MjXFtKqdX2UKGgGaAloD0MIOiS1UDJZB8CUhpRSlGgVSzJoFkdAp/CLsKLKm3V9lChoBmgJaA9DCBPyQc9m9QjAlIaUUpRoFUsyaBZHQKfwU4G2TgV1fZQoaAZoCWgPQwgcRdYaSi0BwJSGlFKUaBVLMmgWR0Cn8f+PJaJRdX2UKGgGaAloD0MIU14robtkDMCUhpRSlGgVSzJoFkdAp/HGD3/PxHV9lChoBmgJaA9DCLqGGRpPRPe/lIaUUpRoFUsyaBZHQKfxiORT0g91fZQoaAZoCWgPQwgOEqJ8QSsJwJSGlFKUaBVLMmgWR0Cn8VCOvMbFdX2UKGgGaAloD0MIcqd0sP6PB8CUhpRSlGgVSzJoFkdAp/MDasZHeHV9lChoBmgJaA9DCPyrx32rtQbAlIaUUpRoFUsyaBZHQKfyyfxtpEh1fZQoaAZoCWgPQwiduYeE710IwJSGlFKUaBVLMmgWR0Cn8ozTfBN3dX2UKGgGaAloD0MIUzwuqkVE9r+UhpRSlGgVSzJoFkdAp/JUdRzij3V9lChoBmgJaA9DCD9VhQZi2QLAlIaUUpRoFUsyaBZHQKf0GKu0TlF1fZQoaAZoCWgPQwgogjgPJ7ARwJSGlFKUaBVLMmgWR0Cn89+S8rZrdX2UKGgGaAloD0MIk4ychT0t+7+UhpRSlGgVSzJoFkdAp/Oiguh9LHV9lChoBmgJaA9DCKkz95DwvQPAlIaUUpRoFUsyaBZHQKfzajlgc951fZQoaAZoCWgPQwiyYyMQr6v1v5SGlFKUaBVLMmgWR0Cn9VvcafjCdX2UKGgGaAloD0MII7w9CAEJEsCUhpRSlGgVSzJoFkdAp/Uir3j+73V9lChoBmgJaA9DCIknu5nRjw7AlIaUUpRoFUsyaBZHQKf05XJYDDF1fZQoaAZoCWgPQwiy1eWUgNgJwJSGlFKUaBVLMmgWR0Cn9K1W0Z3tdX2UKGgGaAloD0MIgjtQpzwaAsCUhpRSlGgVSzJoFkdAp/aG/1xsEnV9lChoBmgJaA9DCEHWU6uvLv6/lIaUUpRoFUsyaBZHQKf2TdbgTAZ1fZQoaAZoCWgPQwj5LM+DuxMAwJSGlFKUaBVLMmgWR0Cn9hCnP3SKdX2UKGgGaAloD0MIvTRFgNO797+UhpRSlGgVSzJoFkdAp/XYgV45cXV9lChoBmgJaA9DCJiKjXkdEQ7AlIaUUpRoFUsyaBZHQKf3lDdgv111fZQoaAZoCWgPQwh4t7JEZzkBwJSGlFKUaBVLMmgWR0Cn91s495hSdX2UKGgGaAloD0MIsP86N20GA8CUhpRSlGgVSzJoFkdAp/ced3B55nV9lChoBmgJaA9DCKjF4GHatxTAlIaUUpRoFUsyaBZHQKf25krf+CN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -3.
|
|
|
1 |
+
{"mean_reward": -3.4277969150803984, "std_reward": 0.9403226004917279, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-21T19:39:09.550849"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ad4751ac835734878464543feb30786e5d003e513fa16868f5f1f43462cddd6
|
3 |
size 2387
|