Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +10 -10
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.36 +/- 1.29
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cd8a20d814f238f30bc3dfebdc955e161adc8fbfb62e88b1714a84d95253f7d
|
3 |
+
size 108073
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -24,7 +24,7 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[-0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f29a42bb880>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f29a42bd100>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1687206092299718817,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkcCFPknhbL2dMAg/kcCFPknhbL2dMAg/kcCFPknhbL2dMAg/kcCFPknhbL2dMAg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/37KP/tIfT9dmao/lNEmvzGCbL9YDG6+Spqtv97Jsr8JiPK+G8e/P3cf0D9CA5y/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACRwIU+SeFsvZ0wCD/wPLo6fdXwuxR9IDyRwIU+SeFsvZ0wCD/wPLo6fdXwuxR9IDyRwIU+SeFsvZ0wCD/wPLo6fdXwuxR9IDyRwIU+SeFsvZ0wCD/wPLo6fdXwuxR9IDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.2612348 -0.05783204 0.5319918 ]\n [ 0.2612348 -0.05783204 0.5319918 ]\n [ 0.2612348 -0.05783204 0.5319918 ]\n [ 0.2612348 -0.05783204 0.5319918 ]]",
|
38 |
+
"desired_goal": "[[ 1.5820006 0.98939484 1.3328053 ]\n [-0.6516354 -0.92386156 -0.23246896]\n [-1.356271 -1.3967855 -0.47369412]\n [ 1.4982637 1.6259602 -1.2188494 ]]",
|
39 |
+
"observation": "[[ 0.2612348 -0.05783204 0.5319918 0.00142088 -0.00734967 0.00979545]\n [ 0.2612348 -0.05783204 0.5319918 0.00142088 -0.00734967 0.00979545]\n [ 0.2612348 -0.05783204 0.5319918 0.00142088 -0.00734967 0.00979545]\n [ 0.2612348 -0.05783204 0.5319918 0.00142088 -0.00734967 0.00979545]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA84G0vbC8qr1KwX4+sqAjvER8Cz3jjIs+A4fTvPO4PLua8HI+uyz/PTxhcb3+Sm8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.08813848 -0.08336771 0.24878421]\n [-0.00998704 0.03405406 0.27255926]\n [-0.02582121 -0.00287968 0.23724595]\n [ 0.12459704 -0.05893062 0.23368451]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOIdrtYd98b+UhpRSlIwBbJRLMowBdJRHQJqDEbp/wy91fZQoaAZoCWgPQwjvVMA9z98HwJSGlFKUaBVLMmgWR0CagomxMWXUdX2UKGgGaAloD0MI9WVpp+Zy6b+UhpRSlGgVSzJoFkdAmoIEZJkGzXV9lChoBmgJaA9DCI7pCUs8QArAlIaUUpRoFUsyaBZHQJqBiExqO951fZQoaAZoCWgPQwheLuI7Mev1v5SGlFKUaBVLMmgWR0CahVoCMglodX2UKGgGaAloD0MIOiAJ+3ZS87+UhpRSlGgVSzJoFkdAmoTRwhnrZHV9lChoBmgJaA9DCASSsG8nUfy/lIaUUpRoFUsyaBZHQJqETI2fkFR1fZQoaAZoCWgPQwhNDwpK0SoBwJSGlFKUaBVLMmgWR0Cag9CCBf8edX2UKGgGaAloD0MIhQt5BDcS+L+UhpRSlGgVSzJoFkdAmoeW2Xsw+XV9lChoBmgJaA9DCDP7PEZ5Zv2/lIaUUpRoFUsyaBZHQJqHDqxC6Yp1fZQoaAZoCWgPQwhVMCqpE1D2v5SGlFKUaBVLMmgWR0CaholHBk7PdX2UKGgGaAloD0MIZvZ5jPJsAsCUhpRSlGgVSzJoFkdAmoYNdAxBV3V9lChoBmgJaA9DCJi9bDttDQfAlIaUUpRoFUsyaBZHQJqJ6ymhufp1fZQoaAZoCWgPQwisPIGwU6zwv5SGlFKUaBVLMmgWR0CaiWL0z0pWdX2UKGgGaAloD0MI9+l4zEDl/7+UhpRSlGgVSzJoFkdAmojdrbg0j3V9lChoBmgJaA9DCEYldQKaCP+/lIaUUpRoFUsyaBZHQJqIYZGax5d1fZQoaAZoCWgPQwgyO4veqcADwJSGlFKUaBVLMmgWR0CajDM9KVY7dX2UKGgGaAloD0MI8zgM5q9QBsCUhpRSlGgVSzJoFkdAmourRF7UonV9lChoBmgJaA9DCH1Z2qm5HPO/lIaUUpRoFUsyaBZHQJqLJbJOnEV1fZQoaAZoCWgPQwglzR/T2rQAwJSGlFKUaBVLMmgWR0CaiqnyNGVidX2UKGgGaAloD0MIWwpI+x+g+b+UhpRSlGgVSzJoFkdAmo6lymygPHV9lChoBmgJaA9DCBSuR+F61AfAlIaUUpRoFUsyaBZHQJqOHW5H3Dh1fZQoaAZoCWgPQwizeRwG81f+v5SGlFKUaBVLMmgWR0CajZgWJrLydX2UKGgGaAloD0MIeQPMfAd/B8CUhpRSlGgVSzJoFkdAmo0cAeaKDXV9lChoBmgJaA9DCGKDhZM0P/2/lIaUUpRoFUsyaBZHQJqRActGus91fZQoaAZoCWgPQwgfZcQFoFH7v5SGlFKUaBVLMmgWR0CakHm29crzdX2UKGgGaAloD0MIAtU/iGTI97+UhpRSlGgVSzJoFkdAmo/0rkKeCnV9lChoBmgJaA9DCKdYNQhzmwTAlIaUUpRoFUsyaBZHQJqPeTB68g91fZQoaAZoCWgPQwjs98Q6VR4EwJSGlFKUaBVLMmgWR0Cak0iVB2OidX2UKGgGaAloD0MI170ViQnq9b+UhpRSlGgVSzJoFkdAmpLAfdRBNXV9lChoBmgJaA9DCPmh0oiZPfu/lIaUUpRoFUsyaBZHQJqSO0jTrmh1fZQoaAZoCWgPQwh1BHCzeDH9v5SGlFKUaBVLMmgWR0Cakb86FM7EdX2UKGgGaAloD0MIQbeXNEYr8r+UhpRSlGgVSzJoFkdAmpWkIkZ75XV9lChoBmgJaA9DCL5LqUvG8QHAlIaUUpRoFUsyaBZHQJqVG/ub7TF1fZQoaAZoCWgPQwg7i96pgJsCwJSGlFKUaBVLMmgWR0CalJbS7Xg+dX2UKGgGaAloD0MIjX3JxoMtAsCUhpRSlGgVSzJoFkdAmpQa6nR9gHV9lChoBmgJaA9DCBaE8j6Opvy/lIaUUpRoFUsyaBZHQJqX9hZyMk11fZQoaAZoCWgPQwhBfjZy3VTwv5SGlFKUaBVLMmgWR0Cal23RG+bmdX2UKGgGaAloD0MIZAJ+jSTB+L+UhpRSlGgVSzJoFkdAmpbog7o0RHV9lChoBmgJaA9DCKMjufyHdPm/lIaUUpRoFUsyaBZHQJqWbH3lCC11fZQoaAZoCWgPQwj4wmSqYNQCwJSGlFKUaBVLMmgWR0CamlRPXTVldX2UKGgGaAloD0MI2EgShCsg/L+UhpRSlGgVSzJoFkdAmpnL+glF+nV9lChoBmgJaA9DCFWIR+Llaf2/lIaUUpRoFUsyaBZHQJqZRsXSBsh1fZQoaAZoCWgPQwhNSGsMOqHqv5SGlFKUaBVLMmgWR0CamMrYoRZmdX2UKGgGaAloD0MIZYnOMotQ/b+UhpRSlGgVSzJoFkdAmpyqQ/5cknV9lChoBmgJaA9DCK+ytike1/C/lIaUUpRoFUsyaBZHQJqcIfYBeX11fZQoaAZoCWgPQwgxmSoYlVQFwJSGlFKUaBVLMmgWR0Cam5ypaRp2dX2UKGgGaAloD0MIsP86N20GA8CUhpRSlGgVSzJoFkdAmpsgtjCpFXV9lChoBmgJaA9DCKLVyRmKGwDAlIaUUpRoFUsyaBZHQJqe9da+vhZ1fZQoaAZoCWgPQwj85ChAFMz2v5SGlFKUaBVLMmgWR0Canm1YhdMTdX2UKGgGaAloD0MI98lRgCjY87+UhpRSlGgVSzJoFkdAmp3n4bjtHHV9lChoBmgJaA9DCCwoDMo0mva/lIaUUpRoFUsyaBZHQJqdbFS88Ld1fZQoaAZoCWgPQwiXqUnwhpQAwJSGlFKUaBVLMmgWR0CaoUeV9nbqdX2UKGgGaAloD0MIea2E7pI45b+UhpRSlGgVSzJoFkdAmqC/VI7NjnV9lChoBmgJaA9DCEOtad5xCgrAlIaUUpRoFUsyaBZHQJqgOiFj/dZ1fZQoaAZoCWgPQwgZ48PsZRv1v5SGlFKUaBVLMmgWR0Can75T6zmfdX2UKGgGaAloD0MIDwpK0cp9+7+UhpRSlGgVSzJoFkdAmqPFv60pmXV9lChoBmgJaA9DCOhLb38u2vu/lIaUUpRoFUsyaBZHQJqjPwKBuoB1fZQoaAZoCWgPQwjY1k//WXP0v5SGlFKUaBVLMmgWR0CaorvH93r2dX2UKGgGaAloD0MI/Io1XOSe47+UhpRSlGgVSzJoFkdAmqJC44Ia+HV9lChoBmgJaA9DCLk16bZETg7AlIaUUpRoFUsyaBZHQJqnvsqril11fZQoaAZoCWgPQwgDste7P34FwJSGlFKUaBVLMmgWR0CapzhMrVe8dX2UKGgGaAloD0MILA5nfjWHBsCUhpRSlGgVSzJoFkdAmqa0s4DLbHV9lChoBmgJaA9DCInUtItppu2/lIaUUpRoFUsyaBZHQJqmOuIRAbB1fZQoaAZoCWgPQwgnbD8Z4wMIwJSGlFKUaBVLMmgWR0Caq7N/e+EidX2UKGgGaAloD0MI5dL4hVdSAcCUhpRSlGgVSzJoFkdAmqst2gWadHV9lChoBmgJaA9DCHDqA8k7RwTAlIaUUpRoFUsyaBZHQJqqqm2sq8V1fZQoaAZoCWgPQwhzg6EOK1z1v5SGlFKUaBVLMmgWR0CaqjBwdbPhdX2UKGgGaAloD0MIW+m12VhJ9r+UhpRSlGgVSzJoFkdAmq+yBkI5YHV9lChoBmgJaA9DCENznUZaavy/lIaUUpRoFUsyaBZHQJqvK40/GER1fZQoaAZoCWgPQwjvqgfMQ+b8v5SGlFKUaBVLMmgWR0CarqirDIikdX2UKGgGaAloD0MIB7KeWn117r+UhpRSlGgVSzJoFkdAmq4ulj3Eh3V9lChoBmgJaA9DCG+D2m/tdBLAlIaUUpRoFUsyaBZHQJqz8TnJT2p1fZQoaAZoCWgPQwhu36P+egX3v5SGlFKUaBVLMmgWR0Cas2sqril0dX2UKGgGaAloD0MIbD1DOGYZBsCUhpRSlGgVSzJoFkdAmrLoNRWLgnV9lChoBmgJaA9DCI0OSMK+Xf6/lIaUUpRoFUsyaBZHQJqybrC3w1B1fZQoaAZoCWgPQwg+y/Pg7iwHwJSGlFKUaBVLMmgWR0CauET8YQ8PdX2UKGgGaAloD0MINrBVgsXBBMCUhpRSlGgVSzJoFkdAmre/F72L53V9lChoBmgJaA9DCHb8FwgCBAzAlIaUUpRoFUsyaBZHQJq3PDrJKap1fZQoaAZoCWgPQwgaTpmbb+QEwJSGlFKUaBVLMmgWR0CatsLJjlPrdX2UKGgGaAloD0MIlnoWhPLeDMCUhpRSlGgVSzJoFkdAmryNnGsFMnV9lChoBmgJaA9DCG6l12ZjxQTAlIaUUpRoFUsyaBZHQJq8B6Rhc7h1fZQoaAZoCWgPQwhFDhE3p3IMwJSGlFKUaBVLMmgWR0Cau4Tm4iHJdX2UKGgGaAloD0MILZeNzvmp/b+UhpRSlGgVSzJoFkdAmrsLuIAOrnV9lChoBmgJaA9DCHIxBtZxfOG/lIaUUpRoFUsyaBZHQJq/V5rxiG51fZQoaAZoCWgPQwjqz36kiEz8v5SGlFKUaBVLMmgWR0Cavs9ph4MXdX2UKGgGaAloD0MIqrpHNld9EsCUhpRSlGgVSzJoFkdAmr5KL4vexnV9lChoBmgJaA9DCK93f7xXrfe/lIaUUpRoFUsyaBZHQJq9zjU/fO51fZQoaAZoCWgPQwihR4yeW6jwv5SGlFKUaBVLMmgWR0CawaI0qH45dX2UKGgGaAloD0MIy59vC5bq97+UhpRSlGgVSzJoFkdAmsEaGUOd5XV9lChoBmgJaA9DCFlMbD6uzfW/lIaUUpRoFUsyaBZHQJrAlUR3/xV1fZQoaAZoCWgPQwg1e6AVGDL/v5SGlFKUaBVLMmgWR0CawBlw97ngdX2UKGgGaAloD0MIe6GA7WCkAMCUhpRSlGgVSzJoFkdAmsP03wTdtXV9lChoBmgJaA9DCHUiwVQzawPAlIaUUpRoFUsyaBZHQJrDbIDHOr11fZQoaAZoCWgPQwisqSwKu+jzv5SGlFKUaBVLMmgWR0CawubnHNordX2UKGgGaAloD0MIf6ZetwiM/L+UhpRSlGgVSzJoFkdAmsJq5Xlr/XV9lChoBmgJaA9DCHxHjQkx9wTAlIaUUpRoFUsyaBZHQJrGNpvgm7d1fZQoaAZoCWgPQwhsBrggW9b/v5SGlFKUaBVLMmgWR0Caxa6bONYKdX2UKGgGaAloD0MI/FBpxMyeAMCUhpRSlGgVSzJoFkdAmsUpaiblR3V9lChoBmgJaA9DCFH0wMdgxfm/lIaUUpRoFUsyaBZHQJrErVx0dR11ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9815eb57f7c9169f844f9b98f6756e2545586241db50420d982ecd7d2c27423b
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c2756f620fe9326cc7a1a5122b20c70cc6d9b68603982ed454b91a747c6be22
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f57a3fa88b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f57a3fc4200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686846531344254673, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAc1TUPoJiMjwlTgU/c1TUPoJiMjwlTgU/c1TUPoJiMjwlTgU/c1TUPoJiMjwlTgU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6L5uvz9Ni785fzy/eXb1PgjCnD7UhhI/ZtkxP/gQxj8ukWi/eTwDPqfrXb9S1oo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABzVNQ+gmIyPCVOBT96g/+7yUCZOsK2uTpzVNQ+gmIyPCVOBT96g/+7yUCZOsK2uTpzVNQ+gmIyPCVOBT96g/+7yUCZOsK2uTpzVNQ+gmIyPCVOBT96g/+7yUCZOsK2uTqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4147068 0.01088774 0.52072364]\n [0.4147068 0.01088774 0.52072364]\n [0.4147068 0.01088774 0.52072364]\n [0.4147068 0.01088774 0.52072364]]", "desired_goal": "[[-0.9326005 -1.0882949 -0.73631626]\n [ 0.4794195 0.30616784 0.5723698 ]\n [ 0.6947235 1.5473928 -0.90846527]\n [ 0.12816037 -0.866877 1.0846655 ]]", "observation": "[[ 0.4147068 0.01088774 0.52072364 -0.00779766 0.00116923 0.00141688]\n [ 0.4147068 0.01088774 0.52072364 -0.00779766 0.00116923 0.00141688]\n [ 0.4147068 0.01088774 0.52072364 -0.00779766 0.00116923 0.00141688]\n [ 0.4147068 0.01088774 0.52072364 -0.00779766 0.00116923 0.00141688]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkXfLvXvuUb2YsnM+4TcRPjloyjx/bYQ+OW3rvZKeEb7/M3w+NNOOvdL8ED24V2s+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09934915 -0.05125282 0.23798597]\n [ 0.14181472 0.0247079 0.2586479 ]\n [-0.11495442 -0.14220646 0.2462921 ]\n [-0.06973878 0.03539736 0.22982681]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0lRP5h/dE8CUhpRSlIwBbJRLMowBdJRHQJuhCFfzBhx1fZQoaAZoCWgPQwiVZB2OrtINwJSGlFKUaBVLMmgWR0CboBagVXV9dX2UKGgGaAloD0MIwVd06zX9BcCUhpRSlGgVSzJoFkdAm58h9w3o93V9lChoBmgJaA9DCPaYSGk2zwrAlIaUUpRoFUsyaBZHQJueL/echDB1fZQoaAZoCWgPQwg5uHTMeWYHwJSGlFKUaBVLMmgWR0CboyezD4xldX2UKGgGaAloD0MIHxFTIom+AcCUhpRSlGgVSzJoFkdAm6I2FJxvN3V9lChoBmgJaA9DCP8Iw4AlNwXAlIaUUpRoFUsyaBZHQJuhQPczqKR1fZQoaAZoCWgPQwgqqRPQRBgOwJSGlFKUaBVLMmgWR0CboE6Skj5cdX2UKGgGaAloD0MIKsdkcf+RDcCUhpRSlGgVSzJoFkdAm6U+tbLU1HV9lChoBmgJaA9DCHWvk/qytArAlIaUUpRoFUsyaBZHQJukTROUMXt1fZQoaAZoCWgPQwiFQgQcQlUOwJSGlFKUaBVLMmgWR0Cbo1fLLZBcdX2UKGgGaAloD0MIjL0XX7QH/L+UhpRSlGgVSzJoFkdAm6JmdZq20HV9lChoBmgJaA9DCO/FF+3xIg7AlIaUUpRoFUsyaBZHQJundjqfOD91fZQoaAZoCWgPQwhfmbfqOgQTwJSGlFKUaBVLMmgWR0CbpoZ7XxvvdX2UKGgGaAloD0MIJEVkWMV7D8CUhpRSlGgVSzJoFkdAm6WSZWq95HV9lChoBmgJaA9DCNlg4STNzxzAlIaUUpRoFUsyaBZHQJukoJ/oaDR1fZQoaAZoCWgPQwjMfAc/cRARwJSGlFKUaBVLMmgWR0CbqZlpGnXNdX2UKGgGaAloD0MIvcXDew5MDMCUhpRSlGgVSzJoFkdAm6inwkPcz3V9lChoBmgJaA9DCIqvdhTnaAjAlIaUUpRoFUsyaBZHQJunsqBmPHV1fZQoaAZoCWgPQwjyCG6kbJEEwJSGlFKUaBVLMmgWR0CbpsCyhSLqdX2UKGgGaAloD0MIJuDXSBJkBcCUhpRSlGgVSzJoFkdAm6vNzfaYeHV9lChoBmgJaA9DCHnr/NtlvwbAlIaUUpRoFUsyaBZHQJuq3Y7JW/91fZQoaAZoCWgPQwho5sk1BfIDwJSGlFKUaBVLMmgWR0CbqehllK9PdX2UKGgGaAloD0MIJXUCmghbA8CUhpRSlGgVSzJoFkdAm6j2RvFWGXV9lChoBmgJaA9DCP1K58OzJAfAlIaUUpRoFUsyaBZHQJut9GiHqNZ1fZQoaAZoCWgPQwgou5nRj4YJwJSGlFKUaBVLMmgWR0CbrQLJSzgNdX2UKGgGaAloD0MI5wDBHD2eB8CUhpRSlGgVSzJoFkdAm6wNcv/R3XV9lChoBmgJaA9DCHkHeNLCxQ/AlIaUUpRoFUsyaBZHQJurGyv9tMx1fZQoaAZoCWgPQwidnKG44x0RwJSGlFKUaBVLMmgWR0CbsCZqmCRPdX2UKGgGaAloD0MI+DJRhNRND8CUhpRSlGgVSzJoFkdAm680vPC2t3V9lChoBmgJaA9DCDKrd7gdegvAlIaUUpRoFUsyaBZHQJuuQGHHmzV1fZQoaAZoCWgPQwhS76mc9pQJwJSGlFKUaBVLMmgWR0CbrU4qgAZLdX2UKGgGaAloD0MILQd6qG3zEcCUhpRSlGgVSzJoFkdAm7JIk3S8anV9lChoBmgJaA9DCK8jDtlAKhbAlIaUUpRoFUsyaBZHQJuxVy2hIvt1fZQoaAZoCWgPQwh4Xio25rUMwJSGlFKUaBVLMmgWR0CbsGJC0F8pdX2UKGgGaAloD0MIA5SGGoVUE8CUhpRSlGgVSzJoFkdAm69wSi/O+3V9lChoBmgJaA9DCIKRlzWxwBbAlIaUUpRoFUsyaBZHQJu09a/yoXN1fZQoaAZoCWgPQwhzLsVVZR8JwJSGlFKUaBVLMmgWR0CbtAW2w3YMdX2UKGgGaAloD0MIoS5SKAsfAsCUhpRSlGgVSzJoFkdAm7MRz/6wdXV9lChoBmgJaA9DCIUHza57mxDAlIaUUpRoFUsyaBZHQJuyIcghbGF1fZQoaAZoCWgPQwjyXN+HgwQVwJSGlFKUaBVLMmgWR0CbuIlXRw6ydX2UKGgGaAloD0MIHHv2XKZmA8CUhpRSlGgVSzJoFkdAm7eZaA4GU3V9lChoBmgJaA9DCP2jb9I0CAnAlIaUUpRoFUsyaBZHQJu2pZyMkyF1fZQoaAZoCWgPQwij6lc6Hz4KwJSGlFKUaBVLMmgWR0CbtbUmlZX/dX2UKGgGaAloD0MIl3FTA81nFsCUhpRSlGgVSzJoFkdAm7vydJ8OTnV9lChoBmgJaA9DCM+fNqrTYQjAlIaUUpRoFUsyaBZHQJu7Am5UcXF1fZQoaAZoCWgPQwjsMZHSbI4SwJSGlFKUaBVLMmgWR0Cbug8AaNuMdX2UKGgGaAloD0MIsYaL3NPVCcCUhpRSlGgVSzJoFkdAm7ke1WsBAHV9lChoBmgJaA9DCK5nCMcs6xTAlIaUUpRoFUsyaBZHQJu/bl7tzCF1fZQoaAZoCWgPQwge39416AsUwJSGlFKUaBVLMmgWR0Cbvn7DVH4HdX2UKGgGaAloD0MINstlo3MuEsCUhpRSlGgVSzJoFkdAm72M89wFT3V9lChoBmgJaA9DCNWVz/I8WAjAlIaUUpRoFUsyaBZHQJu8nJmukk91fZQoaAZoCWgPQwikHMwmwEARwJSGlFKUaBVLMmgWR0Cbw0pqh11XdX2UKGgGaAloD0MIF7zoK0jjEsCUhpRSlGgVSzJoFkdAm8JakRBeHHV9lChoBmgJaA9DCNVamIV2fhPAlIaUUpRoFUsyaBZHQJvBZyyUs4F1fZQoaAZoCWgPQwj2I0VkWOUNwJSGlFKUaBVLMmgWR0CbwHeBQN1AdX2UKGgGaAloD0MI0qdV9IfmB8CUhpRSlGgVSzJoFkdAm8bw/cFhX3V9lChoBmgJaA9DCN7LfXIUwAjAlIaUUpRoFUsyaBZHQJvGATj/+851fZQoaAZoCWgPQwjXwFYJFucUwJSGlFKUaBVLMmgWR0CbxQ2OhkAhdX2UKGgGaAloD0MIjxzpDIwsE8CUhpRSlGgVSzJoFkdAm8Qc9jgAInV9lChoBmgJaA9DCJLp0Ol5NwvAlIaUUpRoFUsyaBZHQJvKshGH58B1fZQoaAZoCWgPQwgLR5BKscMFwJSGlFKUaBVLMmgWR0CbycIvJzT4dX2UKGgGaAloD0MIlzszwXDOCsCUhpRSlGgVSzJoFkdAm8jPPw/gSHV9lChoBmgJaA9DCM6mI4CbBRHAlIaUUpRoFUsyaBZHQJvH4aya/h51fZQoaAZoCWgPQwjNdRppqVwLwJSGlFKUaBVLMmgWR0CbzmRbbDdhdX2UKGgGaAloD0MIJ4dPOpHACMCUhpRSlGgVSzJoFkdAm810c0cfeXV9lChoBmgJaA9DCB9oBYaszg/AlIaUUpRoFUsyaBZHQJvMgPjGT9t1fZQoaAZoCWgPQwhuv3yyYmgTwJSGlFKUaBVLMmgWR0Cby5AbyYoidX2UKGgGaAloD0MIWTSdnQwuBsCUhpRSlGgVSzJoFkdAm9D664Ds+nV9lChoBmgJaA9DCKA1P/7S4hTAlIaUUpRoFUsyaBZHQJvQCtRvWH11fZQoaAZoCWgPQwiAJy1cVsERwJSGlFKUaBVLMmgWR0CbzxZXMhX9dX2UKGgGaAloD0MIMevFUE4UBsCUhpRSlGgVSzJoFkdAm84kGJN0vHV9lChoBmgJaA9DCLLUer/RzgPAlIaUUpRoFUsyaBZHQJvTAOqebut1fZQoaAZoCWgPQwjqB3WRQlkPwJSGlFKUaBVLMmgWR0Cb0g9FF2FGdX2UKGgGaAloD0MIUfpCyHmfBMCUhpRSlGgVSzJoFkdAm9EZ97Wuo3V9lChoBmgJaA9DCLFNKhpr/wPAlIaUUpRoFUsyaBZHQJvQJ/e+Eh91fZQoaAZoCWgPQwjurx73rUYTwJSGlFKUaBVLMmgWR0Cb1SNHH3lCdX2UKGgGaAloD0MIHsU56uj4CcCUhpRSlGgVSzJoFkdAm9QxcZ9/jXV9lChoBmgJaA9DCKFl3T8WchfAlIaUUpRoFUsyaBZHQJvTPCO3lS11fZQoaAZoCWgPQwg164zviwsMwJSGlFKUaBVLMmgWR0Cb0koRZlnRdX2UKGgGaAloD0MICklm9Q43AsCUhpRSlGgVSzJoFkdAm9cjufEn9nV9lChoBmgJaA9DCMbdIForGhPAlIaUUpRoFUsyaBZHQJvWMggX/HZ1fZQoaAZoCWgPQwhOfotOlloPwJSGlFKUaBVLMmgWR0Cb1Ty0rsjWdX2UKGgGaAloD0MIpgwc0NJ1AsCUhpRSlGgVSzJoFkdAm9RKjWTX8XV9lChoBmgJaA9DCFBUNqypzALAlIaUUpRoFUsyaBZHQJvZOhysCDF1fZQoaAZoCWgPQwjaVUj5SZUQwJSGlFKUaBVLMmgWR0Cb2EiqyWzGdX2UKGgGaAloD0MIBRkBFY7gA8CUhpRSlGgVSzJoFkdAm9dTTfBN23V9lChoBmgJaA9DCP2hmSfXtArAlIaUUpRoFUsyaBZHQJvWYUUO/cp1fZQoaAZoCWgPQwjkg57Nqm8SwJSGlFKUaBVLMmgWR0Cb20Q4jrzHdX2UKGgGaAloD0MI4pLjTumgB8CUhpRSlGgVSzJoFkdAm9pStRvWH3V9lChoBmgJaA9DCPF+3H75RA3AlIaUUpRoFUsyaBZHQJvZXVwxWT51fZQoaAZoCWgPQwg8TzxnC6gDwJSGlFKUaBVLMmgWR0Cb2GsAeaKDdX2UKGgGaAloD0MIqcE0DB+hEsCUhpRSlGgVSzJoFkdAm93Ag9vCM3V9lChoBmgJaA9DCJiJIqRupw7AlIaUUpRoFUsyaBZHQJvczvBrN4Z1fZQoaAZoCWgPQwiqJ/OPvhkSwJSGlFKUaBVLMmgWR0Cb29tXPqs2dX2UKGgGaAloD0MI1/oioS0HFMCUhpRSlGgVSzJoFkdAm9rpMlC1JHV9lChoBmgJaA9DCHXpX5LKFBTAlIaUUpRoFUsyaBZHQJvfzW4EwFl1fZQoaAZoCWgPQwihnj4CfzgMwJSGlFKUaBVLMmgWR0Cb3tvUjLSvdX2UKGgGaAloD0MIgQpHkEqxDsCUhpRSlGgVSzJoFkdAm93mn4wh4nV9lChoBmgJaA9DCNofKLftGwXAlIaUUpRoFUsyaBZHQJvc9EBsANp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f29a42bb880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f29a42bd100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687206092299718817, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkcCFPknhbL2dMAg/kcCFPknhbL2dMAg/kcCFPknhbL2dMAg/kcCFPknhbL2dMAg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/37KP/tIfT9dmao/lNEmvzGCbL9YDG6+Spqtv97Jsr8JiPK+G8e/P3cf0D9CA5y/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACRwIU+SeFsvZ0wCD/wPLo6fdXwuxR9IDyRwIU+SeFsvZ0wCD/wPLo6fdXwuxR9IDyRwIU+SeFsvZ0wCD/wPLo6fdXwuxR9IDyRwIU+SeFsvZ0wCD/wPLo6fdXwuxR9IDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.2612348 -0.05783204 0.5319918 ]\n [ 0.2612348 -0.05783204 0.5319918 ]\n [ 0.2612348 -0.05783204 0.5319918 ]\n [ 0.2612348 -0.05783204 0.5319918 ]]", "desired_goal": "[[ 1.5820006 0.98939484 1.3328053 ]\n [-0.6516354 -0.92386156 -0.23246896]\n [-1.356271 -1.3967855 -0.47369412]\n [ 1.4982637 1.6259602 -1.2188494 ]]", "observation": "[[ 0.2612348 -0.05783204 0.5319918 0.00142088 -0.00734967 0.00979545]\n [ 0.2612348 -0.05783204 0.5319918 0.00142088 -0.00734967 0.00979545]\n [ 0.2612348 -0.05783204 0.5319918 0.00142088 -0.00734967 0.00979545]\n [ 0.2612348 -0.05783204 0.5319918 0.00142088 -0.00734967 0.00979545]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA84G0vbC8qr1KwX4+sqAjvER8Cz3jjIs+A4fTvPO4PLua8HI+uyz/PTxhcb3+Sm8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08813848 -0.08336771 0.24878421]\n [-0.00998704 0.03405406 0.27255926]\n [-0.02582121 -0.00287968 0.23724595]\n [ 0.12459704 -0.05893062 0.23368451]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOIdrtYd98b+UhpRSlIwBbJRLMowBdJRHQJqDEbp/wy91fZQoaAZoCWgPQwjvVMA9z98HwJSGlFKUaBVLMmgWR0CagomxMWXUdX2UKGgGaAloD0MI9WVpp+Zy6b+UhpRSlGgVSzJoFkdAmoIEZJkGzXV9lChoBmgJaA9DCI7pCUs8QArAlIaUUpRoFUsyaBZHQJqBiExqO951fZQoaAZoCWgPQwheLuI7Mev1v5SGlFKUaBVLMmgWR0CahVoCMglodX2UKGgGaAloD0MIOiAJ+3ZS87+UhpRSlGgVSzJoFkdAmoTRwhnrZHV9lChoBmgJaA9DCASSsG8nUfy/lIaUUpRoFUsyaBZHQJqETI2fkFR1fZQoaAZoCWgPQwhNDwpK0SoBwJSGlFKUaBVLMmgWR0Cag9CCBf8edX2UKGgGaAloD0MIhQt5BDcS+L+UhpRSlGgVSzJoFkdAmoeW2Xsw+XV9lChoBmgJaA9DCDP7PEZ5Zv2/lIaUUpRoFUsyaBZHQJqHDqxC6Yp1fZQoaAZoCWgPQwhVMCqpE1D2v5SGlFKUaBVLMmgWR0CaholHBk7PdX2UKGgGaAloD0MIZvZ5jPJsAsCUhpRSlGgVSzJoFkdAmoYNdAxBV3V9lChoBmgJaA9DCJi9bDttDQfAlIaUUpRoFUsyaBZHQJqJ6ymhufp1fZQoaAZoCWgPQwisPIGwU6zwv5SGlFKUaBVLMmgWR0CaiWL0z0pWdX2UKGgGaAloD0MI9+l4zEDl/7+UhpRSlGgVSzJoFkdAmojdrbg0j3V9lChoBmgJaA9DCEYldQKaCP+/lIaUUpRoFUsyaBZHQJqIYZGax5d1fZQoaAZoCWgPQwgyO4veqcADwJSGlFKUaBVLMmgWR0CajDM9KVY7dX2UKGgGaAloD0MI8zgM5q9QBsCUhpRSlGgVSzJoFkdAmourRF7UonV9lChoBmgJaA9DCH1Z2qm5HPO/lIaUUpRoFUsyaBZHQJqLJbJOnEV1fZQoaAZoCWgPQwglzR/T2rQAwJSGlFKUaBVLMmgWR0CaiqnyNGVidX2UKGgGaAloD0MIWwpI+x+g+b+UhpRSlGgVSzJoFkdAmo6lymygPHV9lChoBmgJaA9DCBSuR+F61AfAlIaUUpRoFUsyaBZHQJqOHW5H3Dh1fZQoaAZoCWgPQwizeRwG81f+v5SGlFKUaBVLMmgWR0CajZgWJrLydX2UKGgGaAloD0MIeQPMfAd/B8CUhpRSlGgVSzJoFkdAmo0cAeaKDXV9lChoBmgJaA9DCGKDhZM0P/2/lIaUUpRoFUsyaBZHQJqRActGus91fZQoaAZoCWgPQwgfZcQFoFH7v5SGlFKUaBVLMmgWR0CakHm29crzdX2UKGgGaAloD0MIAtU/iGTI97+UhpRSlGgVSzJoFkdAmo/0rkKeCnV9lChoBmgJaA9DCKdYNQhzmwTAlIaUUpRoFUsyaBZHQJqPeTB68g91fZQoaAZoCWgPQwjs98Q6VR4EwJSGlFKUaBVLMmgWR0Cak0iVB2OidX2UKGgGaAloD0MI170ViQnq9b+UhpRSlGgVSzJoFkdAmpLAfdRBNXV9lChoBmgJaA9DCPmh0oiZPfu/lIaUUpRoFUsyaBZHQJqSO0jTrmh1fZQoaAZoCWgPQwh1BHCzeDH9v5SGlFKUaBVLMmgWR0Cakb86FM7EdX2UKGgGaAloD0MIQbeXNEYr8r+UhpRSlGgVSzJoFkdAmpWkIkZ75XV9lChoBmgJaA9DCL5LqUvG8QHAlIaUUpRoFUsyaBZHQJqVG/ub7TF1fZQoaAZoCWgPQwg7i96pgJsCwJSGlFKUaBVLMmgWR0CalJbS7Xg+dX2UKGgGaAloD0MIjX3JxoMtAsCUhpRSlGgVSzJoFkdAmpQa6nR9gHV9lChoBmgJaA9DCBaE8j6Opvy/lIaUUpRoFUsyaBZHQJqX9hZyMk11fZQoaAZoCWgPQwhBfjZy3VTwv5SGlFKUaBVLMmgWR0Cal23RG+bmdX2UKGgGaAloD0MIZAJ+jSTB+L+UhpRSlGgVSzJoFkdAmpbog7o0RHV9lChoBmgJaA9DCKMjufyHdPm/lIaUUpRoFUsyaBZHQJqWbH3lCC11fZQoaAZoCWgPQwj4wmSqYNQCwJSGlFKUaBVLMmgWR0CamlRPXTVldX2UKGgGaAloD0MI2EgShCsg/L+UhpRSlGgVSzJoFkdAmpnL+glF+nV9lChoBmgJaA9DCFWIR+Llaf2/lIaUUpRoFUsyaBZHQJqZRsXSBsh1fZQoaAZoCWgPQwhNSGsMOqHqv5SGlFKUaBVLMmgWR0CamMrYoRZmdX2UKGgGaAloD0MIZYnOMotQ/b+UhpRSlGgVSzJoFkdAmpyqQ/5cknV9lChoBmgJaA9DCK+ytike1/C/lIaUUpRoFUsyaBZHQJqcIfYBeX11fZQoaAZoCWgPQwgxmSoYlVQFwJSGlFKUaBVLMmgWR0Cam5ypaRp2dX2UKGgGaAloD0MIsP86N20GA8CUhpRSlGgVSzJoFkdAmpsgtjCpFXV9lChoBmgJaA9DCKLVyRmKGwDAlIaUUpRoFUsyaBZHQJqe9da+vhZ1fZQoaAZoCWgPQwj85ChAFMz2v5SGlFKUaBVLMmgWR0Canm1YhdMTdX2UKGgGaAloD0MI98lRgCjY87+UhpRSlGgVSzJoFkdAmp3n4bjtHHV9lChoBmgJaA9DCCwoDMo0mva/lIaUUpRoFUsyaBZHQJqdbFS88Ld1fZQoaAZoCWgPQwiXqUnwhpQAwJSGlFKUaBVLMmgWR0CaoUeV9nbqdX2UKGgGaAloD0MIea2E7pI45b+UhpRSlGgVSzJoFkdAmqC/VI7NjnV9lChoBmgJaA9DCEOtad5xCgrAlIaUUpRoFUsyaBZHQJqgOiFj/dZ1fZQoaAZoCWgPQwgZ48PsZRv1v5SGlFKUaBVLMmgWR0Can75T6zmfdX2UKGgGaAloD0MIDwpK0cp9+7+UhpRSlGgVSzJoFkdAmqPFv60pmXV9lChoBmgJaA9DCOhLb38u2vu/lIaUUpRoFUsyaBZHQJqjPwKBuoB1fZQoaAZoCWgPQwjY1k//WXP0v5SGlFKUaBVLMmgWR0CaorvH93r2dX2UKGgGaAloD0MI/Io1XOSe47+UhpRSlGgVSzJoFkdAmqJC44Ia+HV9lChoBmgJaA9DCLk16bZETg7AlIaUUpRoFUsyaBZHQJqnvsqril11fZQoaAZoCWgPQwgDste7P34FwJSGlFKUaBVLMmgWR0CapzhMrVe8dX2UKGgGaAloD0MILA5nfjWHBsCUhpRSlGgVSzJoFkdAmqa0s4DLbHV9lChoBmgJaA9DCInUtItppu2/lIaUUpRoFUsyaBZHQJqmOuIRAbB1fZQoaAZoCWgPQwgnbD8Z4wMIwJSGlFKUaBVLMmgWR0Caq7N/e+EidX2UKGgGaAloD0MI5dL4hVdSAcCUhpRSlGgVSzJoFkdAmqst2gWadHV9lChoBmgJaA9DCHDqA8k7RwTAlIaUUpRoFUsyaBZHQJqqqm2sq8V1fZQoaAZoCWgPQwhzg6EOK1z1v5SGlFKUaBVLMmgWR0CaqjBwdbPhdX2UKGgGaAloD0MIW+m12VhJ9r+UhpRSlGgVSzJoFkdAmq+yBkI5YHV9lChoBmgJaA9DCENznUZaavy/lIaUUpRoFUsyaBZHQJqvK40/GER1fZQoaAZoCWgPQwjvqgfMQ+b8v5SGlFKUaBVLMmgWR0CarqirDIikdX2UKGgGaAloD0MIB7KeWn117r+UhpRSlGgVSzJoFkdAmq4ulj3Eh3V9lChoBmgJaA9DCG+D2m/tdBLAlIaUUpRoFUsyaBZHQJqz8TnJT2p1fZQoaAZoCWgPQwhu36P+egX3v5SGlFKUaBVLMmgWR0Cas2sqril0dX2UKGgGaAloD0MIbD1DOGYZBsCUhpRSlGgVSzJoFkdAmrLoNRWLgnV9lChoBmgJaA9DCI0OSMK+Xf6/lIaUUpRoFUsyaBZHQJqybrC3w1B1fZQoaAZoCWgPQwg+y/Pg7iwHwJSGlFKUaBVLMmgWR0CauET8YQ8PdX2UKGgGaAloD0MINrBVgsXBBMCUhpRSlGgVSzJoFkdAmre/F72L53V9lChoBmgJaA9DCHb8FwgCBAzAlIaUUpRoFUsyaBZHQJq3PDrJKap1fZQoaAZoCWgPQwgaTpmbb+QEwJSGlFKUaBVLMmgWR0CatsLJjlPrdX2UKGgGaAloD0MIlnoWhPLeDMCUhpRSlGgVSzJoFkdAmryNnGsFMnV9lChoBmgJaA9DCG6l12ZjxQTAlIaUUpRoFUsyaBZHQJq8B6Rhc7h1fZQoaAZoCWgPQwhFDhE3p3IMwJSGlFKUaBVLMmgWR0Cau4Tm4iHJdX2UKGgGaAloD0MILZeNzvmp/b+UhpRSlGgVSzJoFkdAmrsLuIAOrnV9lChoBmgJaA9DCHIxBtZxfOG/lIaUUpRoFUsyaBZHQJq/V5rxiG51fZQoaAZoCWgPQwjqz36kiEz8v5SGlFKUaBVLMmgWR0Cavs9ph4MXdX2UKGgGaAloD0MIqrpHNld9EsCUhpRSlGgVSzJoFkdAmr5KL4vexnV9lChoBmgJaA9DCK93f7xXrfe/lIaUUpRoFUsyaBZHQJq9zjU/fO51fZQoaAZoCWgPQwihR4yeW6jwv5SGlFKUaBVLMmgWR0CawaI0qH45dX2UKGgGaAloD0MIy59vC5bq97+UhpRSlGgVSzJoFkdAmsEaGUOd5XV9lChoBmgJaA9DCFlMbD6uzfW/lIaUUpRoFUsyaBZHQJrAlUR3/xV1fZQoaAZoCWgPQwg1e6AVGDL/v5SGlFKUaBVLMmgWR0CawBlw97ngdX2UKGgGaAloD0MIe6GA7WCkAMCUhpRSlGgVSzJoFkdAmsP03wTdtXV9lChoBmgJaA9DCHUiwVQzawPAlIaUUpRoFUsyaBZHQJrDbIDHOr11fZQoaAZoCWgPQwisqSwKu+jzv5SGlFKUaBVLMmgWR0CawubnHNordX2UKGgGaAloD0MIf6ZetwiM/L+UhpRSlGgVSzJoFkdAmsJq5Xlr/XV9lChoBmgJaA9DCHxHjQkx9wTAlIaUUpRoFUsyaBZHQJrGNpvgm7d1fZQoaAZoCWgPQwhsBrggW9b/v5SGlFKUaBVLMmgWR0Caxa6bONYKdX2UKGgGaAloD0MI/FBpxMyeAMCUhpRSlGgVSzJoFkdAmsUpaiblR3V9lChoBmgJaA9DCFH0wMdgxfm/lIaUUpRoFUsyaBZHQJrErVx0dR11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.355623197881505, "std_reward": 1.2935161446296357, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-19T20:50:02.137875"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8015b307eb1453618799ce8e2061de740736be66f0525a40f8c020dc60e3427
|
3 |
size 2387
|