{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78c7d20160c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694485001552349108, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZuIrxId466Be5fuZyOSrSSps46PumBOAAAgD8AAIA/+uIzvmlXvD6GkTU+QzidvidGIj0iM3I9AAAAAAAAAACzM3w9KQB9ulYdD7SPNlytejZzOtUsuTMAAIA/AACAP7PTOL3hHJK6kfqpN6I8pzLpCb26PeLEtgAAgD8AAIA//r+Nvk1SVb3B+QI7hxDyORIetz6qfDa6AACAPwAAgD+aGey67rW0vI7Vk71MW4a96TwMPgUytD4AAIA/AACAPzsZkL797229cid2u58WYrpfd80+ytjyOgAAgD8AAIA/M8NXOziP2bsrmsk6TLeRPEJoPT2j8XS9AACAPwAAgD8GgxW+WrSSP1Ncxb7ZwfW+4+Fdvoswg74AAAAAAAAAAO2iMr4gwKY+78E/P14iob6diNI9Cb/EPgAAAAAAAAAAABtoPY+ubbon8awzKjYvr65oabrsbcmzAACAPwAAgD8zY229qd9nPdzhnDsj9YK+VnGTvAuCa7wAAAAAAAAAAADK+bycl168d+KBvElGPzznnsM9dBQfvQAAgD8AAIA/MGuGviE4Az/NKtU9YmC2vuEV5b03zUI9AAAAAAAAAABQ026+shyHPw7ixL4CABy/u7mxvkE1Mr4AAAAAAAAAAABQBz0oVPk9Tx6Lvh/1mL6F/Di9rhM7PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHsuBUaQ3iMAWyUTZwBjAF0lEdAlXD6xxDLKXV9lChoBkdAcZzREnb7CWgHTRsBaAhHQJWCdEPUayd1fZQoaAZHQG4AyeqaPS5oB02mAWgIR0CVg31UVBUrdX2UKGgGR0BwW0w22oegaAdN8gJoCEdAlYaAL7XQMXV9lChoBkdAcem01ZTya2gHTRoBaAhHQJWG2VgQYk51fZQoaAZHQHDtTfBN21VoB01oAWgIR0CVh5C8OCoTdX2UKGgGR0Bx3tJz1bqyaAdNggFoCEdAlYfVvZRKpXV9lChoBkdAVC1Jsfq5b2gHS+doCEdAlYkFe0G/vnV9lChoBkdAceBrO7g882gHS/5oCEdAlYkakEcKgXV9lChoBkdAcXFNRFZxJmgHTSYBaAhHQJWKK+M6zVt1fZQoaAZHQHAQmSU1Q69oB00KAWgIR0CVilIYFaB7dX2UKGgGR0BzhZCJGe+VaAdNKwFoCEdAlYsebAk9lnV9lChoBkdAcalHTqjaf2gHTV0BaAhHQJWLSEoOQQt1fZQoaAZHQHJb8Of/WDpoB01cAWgIR0CVi7CPZIxydX2UKGgGR0Bw8M3n6l+FaAdNeANoCEdAlYvRFNL13HV9lChoBkdAczRBjWkJr2gHTV0BaAhHQJWOOF49ovl1fZQoaAZHQHG6FcpsoDxoB0vsaAhHQJWO7JEH+qB1fZQoaAZHQHALKQV9F4NoB01LAmgIR0CVj//M4cWCdX2UKGgGR0BxQj3Zf2K3aAdL9mgIR0CVkDq2SdOJdX2UKGgGR0Bxl1wsGxD9aAdNIwFoCEdAlZB71qWTo3V9lChoBkdAcY4x0uDjBGgHTQoBaAhHQJWQnyTY/V11fZQoaAZHQG9FLyUcGTtoB00JAWgIR0CVki/ZM+NcdX2UKGgGR0BxhiilBQenaAdNCwFoCEdAlZJbB42S+3V9lChoBkdAcdR+ee4Cp2gHS/5oCEdAlZQ2Y0EX+HV9lChoBkdAch+xOclPamgHTeIBaAhHQJWU0fGMn7Z1fZQoaAZHQHJlwYHgP3BoB008AWgIR0CVld9SMtK7dX2UKGgGR0BwJqkO7QLNaAdNGgFoCEdAlZaBHf/FSHV9lChoBkdAcaUO801qFmgHTUkBaAhHQJWX1mPHT7V1fZQoaAZHQHH13wgDA8BoB01RAWgIR0CVmMfuCwr2dX2UKGgGR0BxGZ9NN8E3aAdNigFoCEdAlZmWgzxgA3V9lChoBkdAcREdPLxI8WgHS/JoCEdAlZrJLdvbXnV9lChoBkdAcSJTAFgUlGgHTQUBaAhHQJWbVW5paid1fZQoaAZHQG22RgRbr1NoB00UAWgIR0CVnP0GeMAFdX2UKGgGR0ByVdBnjABUaAdNbQFoCEdAlZ3qXnhbW3V9lChoBkdAcMJE/0NBnmgHTV0BaAhHQJWeIaS9ugp1fZQoaAZHQFJDvSMLncNoB0uzaAhHQJWe5wMpgCx1fZQoaAZHQHEJdmUW2w5oB01xAWgIR0CVoXRB/qgRdX2UKGgGR0Bvy7+WGATaaAdNRwFoCEdAlaGPA9FF2HV9lChoBkdAcozpVS4vvmgHS/xoCEdAlaHh7zCk43V9lChoBkdAcK04oJAt4GgHTU4BaAhHQJWiDAoG6f91fZQoaAZHQHCClZ1V5rxoB01MAWgIR0CVpHCwKSgXdX2UKGgGR0Bu0fSSeRPoaAdNWwFoCEdAlaSOSjgydnV9lChoBkdAcrgzZpSJj2gHTRUBaAhHQJWk+7sfJV91fZQoaAZHQGzW7Kq4pc5oB00AAWgIR0CVpbQla8pTdX2UKGgGR0ByqOVeKKpDaAdNDAFoCEdAlaeJx3mmtXV9lChoBkdActT5XEIgNmgHTRkBaAhHQJWnltvXK8t1fZQoaAZHQFqm2Zy+6AhoB03oA2gIR0CVqHNUwSJ1dX2UKGgGR0BwFN8x9G7SaAdL8WgIR0CVqIbFCLMtdX2UKGgGR0BzJdmz0HyFaAdNdAFoCEdAlakVL8Jla3V9lChoBkdAb70NIbwSamgHTSsBaAhHQJWphjLB9Cx1fZQoaAZHQHEKsFlkH2RoB00dAWgIR0CVuvua4MF2dX2UKGgGR0BO1nKfWcz7aAdLqGgIR0CVu07laKUFdX2UKGgGR0BxiYkC3gDSaAdNBgFoCEdAlbvA9FF2FHV9lChoBkdAcSYEUj9n9WgHTVABaAhHQJW74vUSZjR1fZQoaAZHQHIeZQgs9SxoB00GAWgIR0CVvCTm4iHJdX2UKGgGR0BxmXdSEUTMaAdNRwFoCEdAlb3diH6/I3V9lChoBkdAcn8lBQemvWgHTVUBaAhHQJW+D/vOQhh1fZQoaAZHQHCycM/hVENoB00aAWgIR0CVvkjB2wFDdX2UKGgGR0Bub7gl4TsZaAdNDwFoCEdAlb7A9vCMxXV9lChoBkdAcgTJIUahpWgHS+VoCEdAlb+yg5BC2XV9lChoBkdAcha+glF+eGgHTSoBaAhHQJXBA13t8eF1fZQoaAZHQHHASJO32EloB01IAWgIR0CVwf6Hj6vadX2UKGgGR0Bt6LkbPyCnaAdNCwFoCEdAlcIoeYD1XnV9lChoBkdAcuTANG3F1mgHTTsBaAhHQJXCkV6/qPh1fZQoaAZHQG7OSP+4smRoB00vAWgIR0CVwtAhStNjdX2UKGgGR0BwwsjHGS6laAdNBgFoCEdAlcMnUhFEzHV9lChoBkdAcxvRaX8fm2gHTRIBaAhHQJXDLalDWsl1fZQoaAZHQHJWnRCx/utoB03AAWgIR0CVw0oZQ53ldX2UKGgGR0BywK9pRGc4aAdL52gIR0CVxPlHjIaMdX2UKGgGR0BwyhH/cWTHaAdL6mgIR0CVxUpKSPludX2UKGgGR0Bxe5j+aScLaAdNNwFoCEdAlcVT0th/iHV9lChoBkdAcIVLcKw6hmgHTVYBaAhHQJXF5ph4MWp1fZQoaAZHQG/zoM8YAKhoB00HAWgIR0CVxn5RCQcQdX2UKGgGR0BwGaN4qwyJaAdNfAFoCEdAlcba/RE4N3V9lChoBkdAcIPS2phnamgHTSsBaAhHQJXIooLG7z11fZQoaAZHQHGcAgX/HYJoB00LAWgIR0CVyeHcUM5PdX2UKGgGR0Bxi/IYFaB7aAdNCQFoCEdAlcn5HVf/m3V9lChoBkdAcMJIMz/IbWgHS/RoCEdAlcpIG+sYEXV9lChoBkdAcsxNliBoVWgHTQcBaAhHQJXKTJvHcUN1fZQoaAZHQG8NwtJ4B3loB01nAWgIR0CVzAh9srNGdX2UKGgGR0Bx7XcM3IdVaAdNJQFoCEdAlcwtLpRoAXV9lChoBkdAcirHBDXvpmgHTTEBaAhHQJXMa7GvOhV1fZQoaAZHQHDoS1Aqur9oB00RAWgIR0CVzXaSs8xLdX2UKGgGR0Bv5K+SKWLQaAdNFgFoCEdAlc37J4jbBXV9lChoBkdAbrUc/+sHSmgHTRkBaAhHQJXOCBTXJ5p1fZQoaAZHQHLMxuCPIXFoB01bAWgIR0CV0ebpeNT+dX2UKGgGR0BvtlKsdT5waAdNRAFoCEdAldJ8yad+X3V9lChoBkdAcqOe7L+xW2gHTVkBaAhHQJXS6Rhc7hh1fZQoaAZHQHC+Zid8RcxoB0v1aAhHQJXTYC2c8T11fZQoaAZHQG+/Xk5p8F9oB00YAWgIR0CV1bNT987ZdX2UKGgGR0BxeV43WFviaAdNJAFoCEdAldXB99c8knV9lChoBkdAcIqom5UcXGgHTWcBaAhHQJXW/YXfqHJ1fZQoaAZHQHHJ6kM1CPZoB0v9aAhHQJXXVLRKHwh1fZQoaAZHQHGueTV2A5JoB00YAWgIR0CV2BiCrcTKdX2UKGgGR0Bvx4Ox0MgEaAdNFQFoCEdAldgmmgrYoXV9lChoBkdAb2a6FM7EHmgHTQoBaAhHQJXaRdpqREF1fZQoaAZHQHNGAc94eLhoB02MAWgIR0CV2zLaEi+tdX2UKGgGR0BxWrWjGkvcaAdNOAFoCEdAldu1OGj9GnV9lChoBkdAcVyirksBhmgHS+JoCEdAld208vEjxHV9lChoBkdAcOz6asp5NWgHTQEBaAhHQJXe3tqpLmJ1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}