happyme531
commited on
Upload 3 files
Browse files- librkllmrt.so +2 -2
- multiprocess_inference.py +219 -0
- qwen.rkllm +2 -2
librkllmrt.so
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac71a21e0fa68df97ab8145a0beae1c561f31d391ea78c12be675b9d34edea85
|
3 |
+
size 6226872
|
multiprocess_inference.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import signal
|
4 |
+
from multiprocessing import Process, Queue, Event
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
from rkllm_binding import *
|
8 |
+
from rknnlite.api.rknn_lite import RKNNLite
|
9 |
+
|
10 |
+
# 视觉编码器进程
|
11 |
+
def vision_encoder_process(load_ready_queue, embedding_queue, img_path_queue, start_event):
|
12 |
+
|
13 |
+
VISION_ENCODER_PATH = "vision_transformer.rknn"
|
14 |
+
img_size = 448
|
15 |
+
|
16 |
+
# 初始化视觉编码器
|
17 |
+
vision_encoder = RKNNLite(verbose=False)
|
18 |
+
model_size = os.path.getsize(VISION_ENCODER_PATH)
|
19 |
+
print(f"Start loading vision encoder model (size: {model_size / 1024 / 1024:.2f} MB)")
|
20 |
+
start_time = time.time()
|
21 |
+
vision_encoder.load_rknn(VISION_ENCODER_PATH)
|
22 |
+
end_time = time.time()
|
23 |
+
print(f"Vision encoder loaded in {end_time - start_time:.2f} seconds")
|
24 |
+
vision_encoder.init_runtime()
|
25 |
+
|
26 |
+
# 通知主进程加载完成
|
27 |
+
load_ready_queue.put("vision_ready")
|
28 |
+
|
29 |
+
# 等待开始信号
|
30 |
+
start_event.wait()
|
31 |
+
|
32 |
+
def process_image(img_path, vision_encoder):
|
33 |
+
img = cv2.imread(img_path)
|
34 |
+
if img is None:
|
35 |
+
return None
|
36 |
+
print("Start vision inference...")
|
37 |
+
img = cv2.resize(img, (img_size, img_size))
|
38 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
39 |
+
img = img.astype(np.float32)
|
40 |
+
img = img[np.newaxis, :, :, :]
|
41 |
+
|
42 |
+
start_time = time.time()
|
43 |
+
image_embeddings = vision_encoder.inference(inputs=[img], data_format="nhwc")[0].astype(np.float32)
|
44 |
+
end_time = time.time()
|
45 |
+
print(f"Vision encoder inference time: {end_time - start_time:.2f} seconds")
|
46 |
+
return image_embeddings
|
47 |
+
|
48 |
+
while True:
|
49 |
+
img_path = img_path_queue.get()
|
50 |
+
if img_path == "STOP":
|
51 |
+
break
|
52 |
+
embeddings = process_image(img_path, vision_encoder)
|
53 |
+
if embeddings is not None:
|
54 |
+
embedding_queue.put(embeddings)
|
55 |
+
else:
|
56 |
+
embedding_queue.put("ERROR")
|
57 |
+
|
58 |
+
# LLM进程
|
59 |
+
def llm_process(load_ready_queue, embedding_queue, prompt_queue, inference_done_queue, start_event):
|
60 |
+
|
61 |
+
|
62 |
+
MODEL_PATH = "/home/firefly/qwen.rkllm"
|
63 |
+
handle = None
|
64 |
+
|
65 |
+
def signal_handler(signal, frame):
|
66 |
+
print("Ctrl-C pressed, exiting...")
|
67 |
+
global handle
|
68 |
+
if handle:
|
69 |
+
abort(handle)
|
70 |
+
destroy(handle)
|
71 |
+
exit(0)
|
72 |
+
|
73 |
+
signal.signal(signal.SIGINT, signal_handler)
|
74 |
+
os.environ["RKLLM_LOG_LEVEL"] = "1"
|
75 |
+
|
76 |
+
inference_count = 0
|
77 |
+
inference_start_time = 0
|
78 |
+
def result_callback(result, userdata, state):
|
79 |
+
nonlocal inference_start_time, inference_count
|
80 |
+
if state == LLMCallState.RKLLM_RUN_NORMAL:
|
81 |
+
if inference_count == 0:
|
82 |
+
first_token_time = time.time()
|
83 |
+
print(f"Time to first token: {first_token_time - inference_start_time:.2f} seconds")
|
84 |
+
inference_count += 1
|
85 |
+
print(result.contents.text.decode(), end="", flush=True)
|
86 |
+
elif state == LLMCallState.RKLLM_RUN_FINISH:
|
87 |
+
print("\n\n(finished)")
|
88 |
+
inference_done_queue.put("DONE")
|
89 |
+
elif state == LLMCallState.RKLLM_RUN_ERROR:
|
90 |
+
print("\nError occurred during LLM call")
|
91 |
+
inference_done_queue.put("ERROR")
|
92 |
+
|
93 |
+
# 初始化LLM
|
94 |
+
param = create_default_param()
|
95 |
+
param.model_path = MODEL_PATH.encode()
|
96 |
+
param.img_start = "<image>".encode()
|
97 |
+
param.img_end = "</image>".encode()
|
98 |
+
param.img_content = "<unk>".encode()
|
99 |
+
extend_param = RKLLMExtendParam()
|
100 |
+
extend_param.base_domain_id = 1
|
101 |
+
param.extend_param = extend_param
|
102 |
+
|
103 |
+
model_size = os.path.getsize(MODEL_PATH)
|
104 |
+
print(f"Start loading language model (size: {model_size / 1024 / 1024:.2f} MB)")
|
105 |
+
start_time = time.time()
|
106 |
+
handle = init(param, result_callback)
|
107 |
+
end_time = time.time()
|
108 |
+
print(f"Language model loaded in {end_time - start_time:.2f} seconds")
|
109 |
+
|
110 |
+
# 通知主进程加载完成
|
111 |
+
load_ready_queue.put("llm_ready")
|
112 |
+
|
113 |
+
# 创建推理参数
|
114 |
+
infer_param = RKLLMInferParam()
|
115 |
+
infer_param.mode = RKLLMInferMode.RKLLM_INFER_GENERATE.value
|
116 |
+
|
117 |
+
while True:
|
118 |
+
prompt = prompt_queue.get()
|
119 |
+
# print(f"Received prompt: ====\n{prompt}\n====")
|
120 |
+
if prompt == "STOP":
|
121 |
+
break
|
122 |
+
|
123 |
+
image_embeddings = embedding_queue.get()
|
124 |
+
if isinstance(image_embeddings, str) and image_embeddings == "ERROR":
|
125 |
+
print("Error processing image")
|
126 |
+
continue
|
127 |
+
|
128 |
+
rkllm_input = create_rkllm_input(RKLLMInputType.RKLLM_INPUT_MULTIMODAL,
|
129 |
+
prompt=prompt,
|
130 |
+
image_embed=image_embeddings)
|
131 |
+
|
132 |
+
inference_start_time = time.time()
|
133 |
+
run(handle, rkllm_input, infer_param, None)
|
134 |
+
|
135 |
+
# 清理
|
136 |
+
destroy(handle)
|
137 |
+
|
138 |
+
def main():
|
139 |
+
load_ready_queue = Queue()
|
140 |
+
embedding_queue = Queue()
|
141 |
+
img_path_queue = Queue()
|
142 |
+
prompt_queue = Queue()
|
143 |
+
inference_done_queue = Queue()
|
144 |
+
start_event = Event()
|
145 |
+
|
146 |
+
vision_process = Process(target=vision_encoder_process,
|
147 |
+
args=(load_ready_queue, embedding_queue, img_path_queue, start_event))
|
148 |
+
lm_process = Process(target=llm_process,
|
149 |
+
args=(load_ready_queue, embedding_queue, prompt_queue, inference_done_queue, start_event))
|
150 |
+
|
151 |
+
vision_process.start()
|
152 |
+
lm_process.start()
|
153 |
+
|
154 |
+
# 等待模型加载
|
155 |
+
ready_count = 0
|
156 |
+
while ready_count < 2:
|
157 |
+
status = load_ready_queue.get()
|
158 |
+
print(f"Received ready signal: {status}")
|
159 |
+
ready_count += 1
|
160 |
+
|
161 |
+
print("All models loaded, starting interactive mode...")
|
162 |
+
start_event.set()
|
163 |
+
|
164 |
+
# 交互循环
|
165 |
+
try:
|
166 |
+
while True:
|
167 |
+
print("""
|
168 |
+
Enter your input (3 empty lines to start inference, Ctrl+C to exit, for example:
|
169 |
+
详细描述一下{{./test.jpg}}这张图片
|
170 |
+
What is the weather in {{./test.jpg}}?
|
171 |
+
How many people are in {{./test.jpg}}?
|
172 |
+
):
|
173 |
+
""")
|
174 |
+
user_input = []
|
175 |
+
empty_lines = 0
|
176 |
+
|
177 |
+
while empty_lines < 3:
|
178 |
+
line = input()
|
179 |
+
if line.strip() == "":
|
180 |
+
empty_lines += 1
|
181 |
+
else:
|
182 |
+
empty_lines = 0
|
183 |
+
user_input.append(line)
|
184 |
+
|
185 |
+
# 解析输入
|
186 |
+
full_input = "\n".join(user_input[:-3]) # 去掉最后3个空行
|
187 |
+
import re
|
188 |
+
img_match = re.search(r'\{\{(.+?)\}\}', full_input)
|
189 |
+
if not img_match:
|
190 |
+
print("No image path found in input")
|
191 |
+
continue
|
192 |
+
|
193 |
+
img_path = img_match.group(1)
|
194 |
+
# 将图片标记替换为<image>标记
|
195 |
+
prompt = f"""<|im_start|>system
|
196 |
+
You are a helpful assistant.<|im_end|>
|
197 |
+
<|im_start|>user
|
198 |
+
{full_input.replace(img_match.group(0), '<image>')}<|im_end|>
|
199 |
+
<|im_start|>assistant
|
200 |
+
|
201 |
+
"""
|
202 |
+
img_path_queue.put(img_path)
|
203 |
+
prompt_queue.put(prompt)
|
204 |
+
|
205 |
+
# 等待推理完成
|
206 |
+
status = inference_done_queue.get()
|
207 |
+
if status == "ERROR":
|
208 |
+
print("Inference failed")
|
209 |
+
|
210 |
+
except KeyboardInterrupt:
|
211 |
+
print("\nExiting...")
|
212 |
+
img_path_queue.put("STOP")
|
213 |
+
prompt_queue.put("STOP")
|
214 |
+
|
215 |
+
vision_process.join()
|
216 |
+
lm_process.join()
|
217 |
+
|
218 |
+
if __name__ == "__main__":
|
219 |
+
main()
|
qwen.rkllm
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f09aed671c9dc322c4c60b1c649ab200aa76c65e7be409b8f76516dbe433dc5
|
3 |
+
size 8189403140
|