File size: 2,847 Bytes
09349b9 7b3db4c 09349b9 da85c18 09349b9 7b3db4c 09349b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
license: agpl-3.0
base_model: SmilingWolf/wd-convnext-tagger-v3
tags:
- rknn
---
# WD ConvNext Tagger v3 RKNN2
## (English README see below)
在RK3588上运行WaifuDiffusion图像标签模型!
- 推理速度(RK3588):
- 单NPU核: 320ms
- 内存占用(RK3588):
- 0.45GB
## 使用方法
1. 克隆或者下载此仓库到本地
2. 安装依赖
```bash
pip install numpy<2 pandas opencv-python rknn-toolkit-lite2
```
3. 运行
```bash
python run_rknn.py input.jpg
```
输出结果示例:
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6319d0860d7478ae0069cd92/FUx2XdHnAuxIPr464B-_l.jpeg)
```log
tag_id name probs
0 9999999 general 0.521484
5 212816 solo 0.929199
12 15080 short_hair 0.520508
25 540830 1boy 0.947754
40 16613 jewelry 0.577148
72 1300281 male_focus 0.907227
130 10926 pants 0.803223
346 1094664 colored_skin 0.570312
373 4009 turtleneck 0.552246
1532 1314823 black_sweater 0.514160
```
## 模型转换
1. 安装依赖
```bash
pip install numpy<2 onnxruntime rknn-toolkit2
```
2. 下载原始onnx模型
3. 转换onnx模型到rknn模型:
```bash
python convert_rknn.py
```
## 已知问题
- int8量化后精度损失极大, 基本不可用. 不建议使用量化推理.
## 参考
- [SmilingWolf/wd-convnext-tagger-v3](https://huggingface.co/SmilingWolf/wd-convnext-tagger-v3)
## English README
Run WaifuDiffusion image tagging model on RK3588!
- Inference Speed (RK3588):
- Single NPU Core: 320ms
- Memory Usage (RK3588):
- 0.45GB
## Usage
1. Clone or download this repository
2. Install dependencies
```bash
pip install numpy<2 pandas opencv-python rknn-toolkit-lite2
```
3. Run
```bash
python run_rknn.py input.jpg
```
Output example:
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6319d0860d7478ae0069cd92/FUx2XdHnAuxIPr464B-_l.jpeg)
```log
tag_id name probs
0 9999999 general 0.521484
5 212816 solo 0.929199
12 15080 short_hair 0.520508
25 540830 1boy 0.947754
40 16613 jewelry 0.577148
72 1300281 male_focus 0.907227
130 10926 pants 0.803223
346 1094664 colored_skin 0.570312
373 4009 turtleneck 0.552246
1532 1314823 black_sweater 0.514160
```
## Model Conversion
1. Install dependencies
```bash
pip install numpy<2 onnxruntime rknn-toolkit2
```
2. Download original onnx model
3. Convert onnx model to rknn model:
```bash
python convert_rknn.py
```
## Known Issues
- Huge precision loss after int8 quantization, not recommended to use quantized inference.
## References
- [SmilingWolf/wd-convnext-tagger-v3](https://huggingface.co/SmilingWolf/wd-convnext-tagger-v3)
|