--- license: agpl-3.0 base_model: SmilingWolf/wd-convnext-tagger-v3 tags: - rknn --- # WD ConvNext Tagger v3 RKNN2 ## (English README see below) 在RK3588上运行WaifuDiffusion图像标签模型! - 推理速度(RK3588): - 单NPU核: 320ms - 内存占用(RK3588): - 0.45GB ## 使用方法 1. 克隆或者下载此仓库到本地 2. 安装依赖 ```bash pip install numpy<2 pandas opencv-python rknn-toolkit-lite2 ``` 3. 运行 ```bash python run_rknn.py input.jpg ``` 输出结果示例: ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6319d0860d7478ae0069cd92/FUx2XdHnAuxIPr464B-_l.jpeg) ```log tag_id name probs 0 9999999 general 0.521484 5 212816 solo 0.929199 12 15080 short_hair 0.520508 25 540830 1boy 0.947754 40 16613 jewelry 0.577148 72 1300281 male_focus 0.907227 130 10926 pants 0.803223 346 1094664 colored_skin 0.570312 373 4009 turtleneck 0.552246 1532 1314823 black_sweater 0.514160 ``` ## 模型转换 1. 安装依赖 ```bash pip install numpy<2 onnxruntime rknn-toolkit2 ``` 2. 下载原始onnx模型 3. 转换onnx模型到rknn模型: ```bash python convert_rknn.py ``` ## 已知问题 - int8量化后精度损失极大, 基本不可用. 不建议使用量化推理. ## 参考 - [SmilingWolf/wd-convnext-tagger-v3](https://huggingface.co/SmilingWolf/wd-convnext-tagger-v3) ## English README Run WaifuDiffusion image tagging model on RK3588! - Inference Speed (RK3588): - Single NPU Core: 320ms - Memory Usage (RK3588): - 0.45GB ## Usage 1. Clone or download this repository 2. Install dependencies ```bash pip install numpy<2 pandas opencv-python rknn-toolkit-lite2 ``` 3. Run ```bash python run_rknn.py input.jpg ``` Output example: ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6319d0860d7478ae0069cd92/FUx2XdHnAuxIPr464B-_l.jpeg) ```log tag_id name probs 0 9999999 general 0.521484 5 212816 solo 0.929199 12 15080 short_hair 0.520508 25 540830 1boy 0.947754 40 16613 jewelry 0.577148 72 1300281 male_focus 0.907227 130 10926 pants 0.803223 346 1094664 colored_skin 0.570312 373 4009 turtleneck 0.552246 1532 1314823 black_sweater 0.514160 ``` ## Model Conversion 1. Install dependencies ```bash pip install numpy<2 onnxruntime rknn-toolkit2 ``` 2. Download original onnx model 3. Convert onnx model to rknn model: ```bash python convert_rknn.py ``` ## Known Issues - Huge precision loss after int8 quantization, not recommended to use quantized inference. ## References - [SmilingWolf/wd-convnext-tagger-v3](https://huggingface.co/SmilingWolf/wd-convnext-tagger-v3)