File size: 4,669 Bytes
63dc270
 
 
 
 
 
 
 
 
 
 
edc0eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
---
license: cc-by-nc-sa-4.0
datasets:
- kinokokoro/ichikara-instruction-003
language:
- ja
base_model:
- llm-jp/llm-jp-3-13b
pipeline_tag: text-generation
library_name: transformers
---
# llm-jp-3-13b-finetune 使用方法ガイド

## モデル概要
このモデルは、llm-jp/llm-jp-3-13bをベースにLoRA (Parameter-Efficient Fine-Tuning)で学習された公開モデルです。

## 必要な環境
- Python 3.10以上
- CUDA対応GPU(推奨)
- 必要なライブラリ:
  - transformers
  - bitsandbytes
  - accelerate
  - torch
  - peft

## インストール手順

```bash
# 必要なライブラリのインストール
pip install -U pip
pip install -U transformers
pip install -U bitsandbytes
pip install -U accelerate
pip install -U peft
pip install -U torch
```

## 基本的な使用方法

### 1. シンプルな使用方法
```python
from transformers import pipeline

# パイプラインの作成
generator = pipeline(
    "text-generation",
    model="harataku/llm-jp-3-13b-finetune",
    device=0  # GPU使用
)

# テキスト生成
prompt = """### 指示
好きな食べ物について教えてください
### 回答
"""
response = generator(prompt, max_length=200, num_return_sequences=1)
print(response[0]['generated_text'])
```

### 2. 詳細な設定による使用方法
```python
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig
)
import torch

# モデルの設定
model_id = "harataku/llm-jp-3-13b-finetune"

# 量子化の設定
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)

# モデルとトークナイザーの読み込み
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    quantization_config=bnb_config,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)

# 推論用の関数
def generate_response(input_text):
    prompt = f"""### 指示
{input_text}
### 回答
"""

    tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
    attention_mask = torch.ones_like(tokenized_input)

    with torch.no_grad():
        outputs = model.generate(
            tokenized_input,
            attention_mask=attention_mask,
            max_new_tokens=100,
            do_sample=False,
            repetition_penalty=1.2,
            pad_token_id=tokenizer.eos_token_id
        )[0]
    
    response = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
    return response

# 使用例
input_text = "好きな食べ物について教えてください"
response = generate_response(input_text)
print(response)
```

## パラメータの説明

### モデル生成時のパラメータ
- `max_new_tokens`: 生成する最大トークン数(デフォルト: 100)
- `do_sample`: サンプリングを行うかどうか(デフォルト: False)
- `repetition_penalty`: 繰り返しを抑制するためのペナルティ(デフォルト: 1.2)

### 入力フォーマット
入力は以下の形式で行います:
```
### 指示
[入力テキスト]
### 回答
```

## トラブルシューティング

1. メモリエラーが発生する場合:
```python
# より少ないメモリ使用量の設定
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16  # bfloat16からfloat16に変更
)
```

2. GPUが利用できない場合:
```python
# CPUでの実行設定
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="cpu",
    low_cpu_mem_usage=True
)
```

## 注意事項
- 4bit量子化を使用しているため、メモリ使用量は効率的ですが、推論速度とのトレードオフがあります
- GPU環境での実行を推奨します
- 長い入力テキストの場合は、`max_new_tokens`の値を適宜調整してください

## ライセンス
本モデルはベースモデル(llm-jp/llm-jp-3-13b)のライセンスを継承しています。また、学習データとして使用したichikara-instructionデータセットのライセンス(CC-BY-NC-SA)も適用されます。

## 引用
学習データについて:
```
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. 
ichikara-instruction: LLMのための日本語インストラクションデータの構築. 
言語処理学会第30回年次大会(2024)
```

## 更新履歴
- 2024/03/XX: モデルをpublic設定に変更
- 2024/03/XX: READMEを更新し、より簡単な使用方法を追加