Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +14 -14
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.81 +/- 0.46
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e297683a00cf17fb8ac4197c8622e630d510ec26d81c273e6128b7a3712f5982
|
3 |
+
size 108069
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[ 0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,15 +77,15 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
-
"gamma": 0.
|
89 |
"gae_lambda": 1.0,
|
90 |
"ent_coef": 0.0,
|
91 |
"vf_coef": 0.5,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2f98ddc670>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f2f98dd7300>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 500000,
|
45 |
+
"_total_timesteps": 500000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1674980570112989458,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANfjUPhXv3jpzRAI/NfjUPhXv3jpzRAI/NfjUPhXv3jpzRAI/NfjUPhXv3jpzRAI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALBaxP7WUsT+pNr4/KG1vPzRf9rzzeoo+3PLJPzXf8b3/Kzs88VttP5XGw7+tHsC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA1+NQ+Fe/eOnNEAj9Hvqk7bLadOTcoJTw1+NQ+Fe/eOnNEAj9Hvqk7bLadOTcoJTw1+NQ+Fe/eOnNEAj9Hvqk7bLadOTcoJTw1+NQ+Fe/eOnNEAj9Hvqk7bLadOTcoJTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.41595617 0.00170085 0.50885695]\n [0.41595617 0.00170085 0.50885695]\n [0.41595617 0.00170085 0.50885695]\n [0.41595617 0.00170085 0.50885695]]",
|
60 |
+
"desired_goal": "[[ 1.3834891 1.3873507 1.4860431 ]\n [ 0.93525934 -0.03007469 0.27046928]\n [ 1.577724 -0.11810151 0.01142406]\n [ 0.92718416 -1.5294977 -1.5009362 ]]",
|
61 |
+
"observation": "[[4.1595617e-01 1.7008508e-03 5.0885695e-01 5.1801535e-03 3.0081288e-04\n 1.0080389e-02]\n [4.1595617e-01 1.7008508e-03 5.0885695e-01 5.1801535e-03 3.0081288e-04\n 1.0080389e-02]\n [4.1595617e-01 1.7008508e-03 5.0885695e-01 5.1801535e-03 3.0081288e-04\n 1.0080389e-02]\n [4.1595617e-01 1.7008508e-03 5.0885695e-01 5.1801535e-03 3.0081288e-04\n 1.0080389e-02]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABdZsORLyGL5XQQs+SwrpPSCVE7xqHZw9htHFPeIs972V+Tk+TplJvW7+vL0a7Fo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.00022586 -0.14936092 0.13599144]\n [ 0.11378916 -0.00900772 0.07622798]\n [ 0.09659104 -0.12069108 0.18161614]\n [-0.04921847 -0.09228216 0.21379128]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZM+ey9Sk6b+UhpRSlIwBbJRLMowBdJRHQJRa2LZSNwR1fZQoaAZoCWgPQwiL/tDMk2vlv5SGlFKUaBVLMmgWR0CUWlT3IuGsdX2UKGgGaAloD0MI5A8GnnuP5b+UhpRSlGgVSzJoFkdAlFnUxmCiAXV9lChoBmgJaA9DCKZIvhJIieq/lIaUUpRoFUsyaBZHQJRZTpC8e0Z1fZQoaAZoCWgPQwhZFeEmo8rRv5SGlFKUaBVLMmgWR0CUXSF7laKUdX2UKGgGaAloD0MIHXbfMTz23r+UhpRSlGgVSzJoFkdAlFyeJtSAH3V9lChoBmgJaA9DCGmM1lHVhOe/lIaUUpRoFUsyaBZHQJRcHJKaodd1fZQoaAZoCWgPQwgaTwRxHk7jv5SGlFKUaBVLMmgWR0CUW5SVGCqZdX2UKGgGaAloD0MII0xRLo1f4b+UhpRSlGgVSzJoFkdAlF9lv/BFeHV9lChoBmgJaA9DCBAhrpy9s+C/lIaUUpRoFUsyaBZHQJRe40YTCch1fZQoaAZoCWgPQwi8df7tsl/Qv5SGlFKUaBVLMmgWR0CUXmMXJo0zdX2UKGgGaAloD0MIJ4i6D0Dq5r+UhpRSlGgVSzJoFkdAlF3baRISUXV9lChoBmgJaA9DCDj3V4/7Vuy/lIaUUpRoFUsyaBZHQJRhn/BFd9l1fZQoaAZoCWgPQwiRKLSs+8fhv5SGlFKUaBVLMmgWR0CUYRzLwF1TdX2UKGgGaAloD0MIob36eOi71r+UhpRSlGgVSzJoFkdAlGCbe/Ho5nV9lChoBmgJaA9DCIknu5nRj9e/lIaUUpRoFUsyaBZHQJRgE7KaG6B1fZQoaAZoCWgPQwiWr8vwn27cv5SGlFKUaBVLMmgWR0CUY+YWLxZudX2UKGgGaAloD0MIc2n8witJ17+UhpRSlGgVSzJoFkdAlGNiay8jA3V9lChoBmgJaA9DCCDPLt/6MOq/lIaUUpRoFUsyaBZHQJRi4OmR/3F1fZQoaAZoCWgPQwiFBfcDHhjUv5SGlFKUaBVLMmgWR0CUYlk4FRpDdX2UKGgGaAloD0MINnhflQuV2L+UhpRSlGgVSzJoFkdAlGYkQf6oEXV9lChoBmgJaA9DCD27fOvDet2/lIaUUpRoFUsyaBZHQJRloMYuTRp1fZQoaAZoCWgPQwgXnpeKjXngv5SGlFKUaBVLMmgWR0CUZR9ZRsMzdX2UKGgGaAloD0MIfCjRksfT2r+UhpRSlGgVSzJoFkdAlGSXe3x4IXV9lChoBmgJaA9DCFTHKqVn+ui/lIaUUpRoFUsyaBZHQJRobzSThYN1fZQoaAZoCWgPQwh23VuRmKDTv5SGlFKUaBVLMmgWR0CUZ+vLX+VDdX2UKGgGaAloD0MIGhpPBHEe0r+UhpRSlGgVSzJoFkdAlGdqNVBD5XV9lChoBmgJaA9DCJazd0Zbld6/lIaUUpRoFUsyaBZHQJRm4liSaE11fZQoaAZoCWgPQwi3C811Gmnhv5SGlFKUaBVLMmgWR0CUapsE7nxKdX2UKGgGaAloD0MIBFlPrb6617+UhpRSlGgVSzJoFkdAlGoXN1QqJHV9lChoBmgJaA9DCFq5F5gVity/lIaUUpRoFUsyaBZHQJRplbxEv011fZQoaAZoCWgPQwiaIsDpXTznv5SGlFKUaBVLMmgWR0CUaQ2dNFjNdX2UKGgGaAloD0MIPs+fNqrT07+UhpRSlGgVSzJoFkdAlGzSu2Zy/HV9lChoBmgJaA9DCCLElbN3Rt2/lIaUUpRoFUsyaBZHQJRsT/JeVs11fZQoaAZoCWgPQwjL9iFvufrVv5SGlFKUaBVLMmgWR0CUa87TDwYtdX2UKGgGaAloD0MIjsu4qYHmz7+UhpRSlGgVSzJoFkdAlGtHFkxyn3V9lChoBmgJaA9DCJLoZRTLLde/lIaUUpRoFUsyaBZHQJRvIDNhVlx1fZQoaAZoCWgPQwiOAkTBjCnWv5SGlFKUaBVLMmgWR0CUbpyHmA9WdX2UKGgGaAloD0MI+tLbn4uG5r+UhpRSlGgVSzJoFkdAlG4a64Ds+nV9lChoBmgJaA9DCP2H9NvXAeC/lIaUUpRoFUsyaBZHQJRtku3+dbx1fZQoaAZoCWgPQwgLQnkfR/Phv5SGlFKUaBVLMmgWR0CUcWInSfDldX2UKGgGaAloD0MIBW1y+KQT7r+UhpRSlGgVSzJoFkdAlHDerZJ04nV9lChoBmgJaA9DCHk7wmnBi9u/lIaUUpRoFUsyaBZHQJRwXTEzfrN1fZQoaAZoCWgPQwg6WWq932jev5SGlFKUaBVLMmgWR0CUb9VVxS5zdX2UKGgGaAloD0MIJPCHn/8e07+UhpRSlGgVSzJoFkdAlHO0xASnL3V9lChoBmgJaA9DCBDLZg5JLeG/lIaUUpRoFUsyaBZHQJRzMUSIxg11fZQoaAZoCWgPQwiXPJ6WH7jdv5SGlFKUaBVLMmgWR0CUcq/echC/dX2UKGgGaAloD0MIPKWD9X8O0b+UhpRSlGgVSzJoFkdAlHIn5zo2XXV9lChoBmgJaA9DCDtxOV6B6Ny/lIaUUpRoFUsyaBZHQJR2J5a/yoZ1fZQoaAZoCWgPQwjv5xTkZ6Pjv5SGlFKUaBVLMmgWR0CUdabrC3w1dX2UKGgGaAloD0MIfqg0Ymaf6L+UhpRSlGgVSzJoFkdAlHUmvnr6cnV9lChoBmgJaA9DCMpt+x711++/lIaUUpRoFUsyaBZHQJR0oAU+LWJ1fZQoaAZoCWgPQwjovwevXdriv5SGlFKUaBVLMmgWR0CUeJkc0cfedX2UKGgGaAloD0MIxty1hHxQ6r+UhpRSlGgVSzJoFkdAlHgVfeDWb3V9lChoBmgJaA9DCF02OuenuOu/lIaUUpRoFUsyaBZHQJR3lDVpbll1fZQoaAZoCWgPQwjc9j3qr9fgv5SGlFKUaBVLMmgWR0CUdwumJm/WdX2UKGgGaAloD0MI6Nms+lxt4r+UhpRSlGgVSzJoFkdAlHqsbzbvgHV9lChoBmgJaA9DCJuvko/dBee/lIaUUpRoFUsyaBZHQJR6KMfigkF1fZQoaAZoCWgPQwhyUMJM27/vv5SGlFKUaBVLMmgWR0CUeacSoOx0dX2UKGgGaAloD0MIWtk+5C1X1L+UhpRSlGgVSzJoFkdAlHkeqrBCU3V9lChoBmgJaA9DCAwDllzF4uW/lIaUUpRoFUsyaBZHQJR88HPeHi51fZQoaAZoCWgPQwiVYHE48yvjv5SGlFKUaBVLMmgWR0CUfGzbeuV5dX2UKGgGaAloD0MIe4hGdxA76b+UhpRSlGgVSzJoFkdAlHvrHAAQx3V9lChoBmgJaA9DCOpZEMr7uOu/lIaUUpRoFUsyaBZHQJR7Y2l2vB91fZQoaAZoCWgPQwiwc9NmnAbrv5SGlFKUaBVLMmgWR0CUfxLf1pTNdX2UKGgGaAloD0MINPW6RWBs8b+UhpRSlGgVSzJoFkdAlH6OtKZlWnV9lChoBmgJaA9DCI8YPbfQld6/lIaUUpRoFUsyaBZHQJR+Dck+otN1fZQoaAZoCWgPQwiIZTOHpBbmv5SGlFKUaBVLMmgWR0CUfYXLeQ+2dX2UKGgGaAloD0MIpg2HpYGf6L+UhpRSlGgVSzJoFkdAlIFJB1LamHV9lChoBmgJaA9DCGVyameY2t6/lIaUUpRoFUsyaBZHQJSAxTVDrqt1fZQoaAZoCWgPQwjb/L/qyJHkv5SGlFKUaBVLMmgWR0CUgEPM0P6LdX2UKGgGaAloD0MIIvyLoDGT4r+UhpRSlGgVSzJoFkdAlH+79qDbrXV9lChoBmgJaA9DCDp5kQn4teO/lIaUUpRoFUsyaBZHQJSDjdqL0jF1fZQoaAZoCWgPQwiZRpOLMTDkv5SGlFKUaBVLMmgWR0CUgwp+MIeHdX2UKGgGaAloD0MIVFT9SufD2r+UhpRSlGgVSzJoFkdAlIKIs7MgU3V9lChoBmgJaA9DCF+0xwvp8NS/lIaUUpRoFUsyaBZHQJSCAP4EfT11fZQoaAZoCWgPQwhqUDQPYJHTv5SGlFKUaBVLMmgWR0CUhcf2K2rodX2UKGgGaAloD0MINiGtMeiE1L+UhpRSlGgVSzJoFkdAlIVEaVD8cnV9lChoBmgJaA9DCFt7n6pCg+S/lIaUUpRoFUsyaBZHQJSEwwIt16p1fZQoaAZoCWgPQwisxhLWxtjQv5SGlFKUaBVLMmgWR0CUhDs7uDzzdX2UKGgGaAloD0MIn8n+eRow1r+UhpRSlGgVSzJoFkdAlIgZ1q33H3V9lChoBmgJaA9DCIBHVKhuLu6/lIaUUpRoFUsyaBZHQJSHlqxkd3l1fZQoaAZoCWgPQwhMOPQWD+/Rv5SGlFKUaBVLMmgWR0CUhxWJ79hrdX2UKGgGaAloD0MIRDNPrimQx7+UhpRSlGgVSzJoFkdAlIaN4JNTLnV9lChoBmgJaA9DCOli00ohkNq/lIaUUpRoFUsyaBZHQJSKjqcEvCd1fZQoaAZoCWgPQwjRyVLr/UbTv5SGlFKUaBVLMmgWR0CUigtSQ5mzdX2UKGgGaAloD0MIAKyOHOkM1r+UhpRSlGgVSzJoFkdAlImKAWi1zHV9lChoBmgJaA9DCEypS8YxEvO/lIaUUpRoFUsyaBZHQJSJAmQbMot1fZQoaAZoCWgPQwhDHVa45ePwv5SGlFKUaBVLMmgWR0CUjOKbayrxdX2UKGgGaAloD0MIexUZHZCE5r+UhpRSlGgVSzJoFkdAlIxe18b70nV9lChoBmgJaA9DCLxXrUz4peS/lIaUUpRoFUsyaBZHQJSL3VVghKV1fZQoaAZoCWgPQwhZMPFHUSf0v5SGlFKUaBVLMmgWR0CUi1U/wAlwdX2UKGgGaAloD0MI6wHzkCnf8b+UhpRSlGgVSzJoFkdAlI8UKZ2IPHV9lChoBmgJaA9DCI6wqIjTSd6/lIaUUpRoFUsyaBZHQJSOkJlar3l1fZQoaAZoCWgPQwhGBrmLMMXnv5SGlFKUaBVLMmgWR0CUjg8Sf16FdX2UKGgGaAloD0MIrU85Jot76r+UhpRSlGgVSzJoFkdAlI2G9lEqlXV9lChoBmgJaA9DCPQz9bpF4OO/lIaUUpRoFUsyaBZHQJSRUlqrR0F1fZQoaAZoCWgPQwhiTWVR2MXgv5SGlFKUaBVLMmgWR0CUkM64lQdkdX2UKGgGaAloD0MIiV+xhouc97+UhpRSlGgVSzJoFkdAlJBNDQZ4wHV9lChoBmgJaA9DCKH3xhAAnOu/lIaUUpRoFUsyaBZHQJSPxSiudPN1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 25000,
|
87 |
"n_steps": 5,
|
88 |
+
"gamma": 0.95,
|
89 |
"gae_lambda": 1.0,
|
90 |
"ent_coef": 0.0,
|
91 |
"vf_coef": 0.5,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:441d9ad2daaaaec062fc6fb63b9374d5bc203d9ef47cdb2ee99fdf3bd7d19895
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c5b2e44a3cbb562977fa943b2aeeb7db615174bd87c8d1683696ed0ab823d61
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa6335c6940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa6335bde40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674932799565809868, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtlPRPssXD7xtXQo/tlPRPssXD7xtXQo/tlPRPssXD7xtXQo/tlPRPssXD7xtXQo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/lqev+g8bz92IT8+qIfCv02Jqj8rMrI/C4qAPhMoKL9jXMG+YBaCv1Itgzx5Yty/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC2U9E+yxcPvG1dCj/sQQ47bXYWuQtNaLq2U9E+yxcPvG1dCj/sQQ47bXYWuQtNaLq2U9E+yxcPvG1dCj/sQQ47bXYWuQtNaLq2U9E+yxcPvG1dCj/sQQ47bXYWuQtNaLqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4088418 -0.0087337 0.54048806]\n [ 0.4088418 -0.0087337 0.54048806]\n [ 0.4088418 -0.0087337 0.54048806]\n [ 0.4088418 -0.0087337 0.54048806]]", "desired_goal": "[[-1.2371519 0.9345231 0.18665108]\n [-1.5197649 1.3323151 1.392156 ]\n [ 0.25105318 -0.6568615 -0.37765798]\n [-1.0163078 0.01601282 -1.7217551 ]]", "observation": "[[ 4.0884179e-01 -8.7337000e-03 5.4048806e-01 2.1706773e-03\n -1.4349232e-04 -8.8615780e-04]\n [ 4.0884179e-01 -8.7337000e-03 5.4048806e-01 2.1706773e-03\n -1.4349232e-04 -8.8615780e-04]\n [ 4.0884179e-01 -8.7337000e-03 5.4048806e-01 2.1706773e-03\n -1.4349232e-04 -8.8615780e-04]\n [ 4.0884179e-01 -8.7337000e-03 5.4048806e-01 2.1706773e-03\n -1.4349232e-04 -8.8615780e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsWLAPNygqD3ovJ89kximvA886T1fbyo+qkEUPn88T73KVGQ9FRHdvTa9Aj6MQxA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02348456 0.08233806 0.07799703]\n [-0.02027539 0.11388408 0.16644047]\n [ 0.14478174 -0.0505948 0.05574492]\n [-0.10794274 0.1276749 0.03522067]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVAH3PH9a7r+UhpRSlIwBbJRLMowBdJRHQKO53ajesPt1fZQoaAZoCWgPQwgrbXGNz+T3v5SGlFKUaBVLMmgWR0CjuaGHgxagdX2UKGgGaAloD0MIWKmgouoX97+UhpRSlGgVSzJoFkdAo7k/H7xd6nV9lChoBmgJaA9DCOcAwRw9/uq/lIaUUpRoFUsyaBZHQKO4o53kgfV1fZQoaAZoCWgPQwjb4ET0a2vuv5SGlFKUaBVLMmgWR0CjuvIsyzomdX2UKGgGaAloD0MI3SVxVkQN8r+UhpRSlGgVSzJoFkdAo7q2B+Wnj3V9lChoBmgJaA9DCPZGrTB9L/G/lIaUUpRoFUsyaBZHQKO6U7lJYkp1fZQoaAZoCWgPQwgG9phIabbrv5SGlFKUaBVLMmgWR0CjubhtUGVzdX2UKGgGaAloD0MIB5rPudt16L+UhpRSlGgVSzJoFkdAo7wM6cRUWHV9lChoBmgJaA9DCDBGJAot6+a/lIaUUpRoFUsyaBZHQKO70Kmbb111fZQoaAZoCWgPQwjtDb4wmSr7v5SGlFKUaBVLMmgWR0Cju247A+INdX2UKGgGaAloD0MIuvQvSWXK/b+UhpRSlGgVSzJoFkdAo7rSyWzF/HV9lChoBmgJaA9DCKFns+pztei/lIaUUpRoFUsyaBZHQKO9IQdS2ph1fZQoaAZoCWgPQwgsu2BwzZ32v5SGlFKUaBVLMmgWR0CjvOTD4xk/dX2UKGgGaAloD0MIk6tY/Kaw9L+UhpRSlGgVSzJoFkdAo7yCY1He8HV9lChoBmgJaA9DCMN/uoECr/u/lIaUUpRoFUsyaBZHQKO75vo/zJ91fZQoaAZoCWgPQwgxsfm4NlTqv5SGlFKUaBVLMmgWR0CjvjEfcN6PdX2UKGgGaAloD0MI+U7MejHU9L+UhpRSlGgVSzJoFkdAo7309r4333V9lChoBmgJaA9DCLHc0mpI3P+/lIaUUpRoFUsyaBZHQKO9kpVCHAR1fZQoaAZoCWgPQwhaLbDHRGoAwJSGlFKUaBVLMmgWR0CjvPb+kxh2dX2UKGgGaAloD0MIkloomZwa+L+UhpRSlGgVSzJoFkdAo79FDKHO8nV9lChoBmgJaA9DCPiKbr2mJwHAlIaUUpRoFUsyaBZHQKO/CO938oB1fZQoaAZoCWgPQwhNhuP5DCj/v5SGlFKUaBVLMmgWR0Cjvqafzz3AdX2UKGgGaAloD0MI38X7cftl7L+UhpRSlGgVSzJoFkdAo74LIYFaCHV9lChoBmgJaA9DCLJnz2Vqkva/lIaUUpRoFUsyaBZHQKPAW0b961N1fZQoaAZoCWgPQwjMJsCw/JkCwJSGlFKUaBVLMmgWR0CjwB8IiTt+dX2UKGgGaAloD0MIhA8lWvJ447+UhpRSlGgVSzJoFkdAo7+8kIHC43V9lChoBmgJaA9DCERpb/CFCfe/lIaUUpRoFUsyaBZHQKO/IPCl7+l1fZQoaAZoCWgPQwithO6SOCsCwJSGlFKUaBVLMmgWR0CjwXJjtoi+dX2UKGgGaAloD0MICf63kh2b/L+UhpRSlGgVSzJoFkdAo8E2PLgXM3V9lChoBmgJaA9DCIR+pl63iAHAlIaUUpRoFUsyaBZHQKPA09g4Otp1fZQoaAZoCWgPQwg51sVtNIDsv5SGlFKUaBVLMmgWR0CjwDg3Lmp3dX2UKGgGaAloD0MIW5VE9kHW97+UhpRSlGgVSzJoFkdAo8J+n889wHV9lChoBmgJaA9DCFx2iH/YcgDAlIaUUpRoFUsyaBZHQKPCQovSMLp1fZQoaAZoCWgPQwire2Rz1fwBwJSGlFKUaBVLMmgWR0Cjwd/6XSjQdX2UKGgGaAloD0MIWdx/ZDp0+7+UhpRSlGgVSzJoFkdAo8FEchkiEHV9lChoBmgJaA9DCMjuAiUFlu2/lIaUUpRoFUsyaBZHQKPDlrt3OfN1fZQoaAZoCWgPQwiWmGclrTjwv5SGlFKUaBVLMmgWR0Cjw1p9qk/KdX2UKGgGaAloD0MIl8rbEU4L7r+UhpRSlGgVSzJoFkdAo8L4DNhVl3V9lChoBmgJaA9DCBvZlZaR2gLAlIaUUpRoFUsyaBZHQKPCXG+bmU51fZQoaAZoCWgPQwiW6ZeIt87tv5SGlFKUaBVLMmgWR0CjxKlyaNModX2UKGgGaAloD0MIgXwJFRze6r+UhpRSlGgVSzJoFkdAo8RtIqbz9XV9lChoBmgJaA9DCBGOWfYksO6/lIaUUpRoFUsyaBZHQKPECq7ROUN1fZQoaAZoCWgPQwi4zOmymNjlv5SGlFKUaBVLMmgWR0Cjw28GcFyJdX2UKGgGaAloD0MIbjE/NzTl8L+UhpRSlGgVSzJoFkdAo8W0/OdGzHV9lChoBmgJaA9DCH5Rgv5Cz/G/lIaUUpRoFUsyaBZHQKPFeLl3hXN1fZQoaAZoCWgPQwiVRzfCoiLxv5SGlFKUaBVLMmgWR0CjxRY20iQldX2UKGgGaAloD0MInpW04hvqAsCUhpRSlGgVSzJoFkdAo8R6sEJSi3V9lChoBmgJaA9DCOGaO/pfrua/lIaUUpRoFUsyaBZHQKPGwgrYoRZ1fZQoaAZoCWgPQwj4b16c+Krzv5SGlFKUaBVLMmgWR0CjxoX668QJdX2UKGgGaAloD0MIPnrDfeTW4L+UhpRSlGgVSzJoFkdAo8YjriVB2XV9lChoBmgJaA9DCKM/NPPkGuy/lIaUUpRoFUsyaBZHQKPFiB7u2JB1fZQoaAZoCWgPQwhIv30dOOf/v5SGlFKUaBVLMmgWR0Cjx9B6rvLHdX2UKGgGaAloD0MI/dmPFJGh8L+UhpRSlGgVSzJoFkdAo8eUSK3uu3V9lChoBmgJaA9DCIZUUbzK2u+/lIaUUpRoFUsyaBZHQKPHMcdYGMZ1fZQoaAZoCWgPQwhu+N10yw77v5SGlFKUaBVLMmgWR0CjxpY4Qz1sdX2UKGgGaAloD0MIUfaWcr5Y67+UhpRSlGgVSzJoFkdAo8jeZPVNH3V9lChoBmgJaA9DCLgE4J9SZf2/lIaUUpRoFUsyaBZHQKPIog6ltTF1fZQoaAZoCWgPQwhNofMau4QAwJSGlFKUaBVLMmgWR0CjyD+1SflIdX2UKGgGaAloD0MIqtVXVwWq87+UhpRSlGgVSzJoFkdAo8ekKArhBXV9lChoBmgJaA9DCHqM8szLYfi/lIaUUpRoFUsyaBZHQKPJ+RBeHBV1fZQoaAZoCWgPQwiwOnKkM3D+v5SGlFKUaBVLMmgWR0Cjybzyz5XVdX2UKGgGaAloD0MItoZSexHt4L+UhpRSlGgVSzJoFkdAo8laisXBQHV9lChoBmgJaA9DCKM/NPPkmum/lIaUUpRoFUsyaBZHQKPIvwBHTZx1fZQoaAZoCWgPQwgMXB5rRobgv5SGlFKUaBVLMmgWR0CjywWUr08OdX2UKGgGaAloD0MIzR5oBYaMAcCUhpRSlGgVSzJoFkdAo8rJY1YQrnV9lChoBmgJaA9DCCaL+49Mh/6/lIaUUpRoFUsyaBZHQKPKZukUKzB1fZQoaAZoCWgPQwhZvi7Df/rxv5SGlFKUaBVLMmgWR0CjycsfA9FGdX2UKGgGaAloD0MI3T8WokOg/r+UhpRSlGgVSzJoFkdAo8wNjmSyMXV9lChoBmgJaA9DCM3qHW6HhvO/lIaUUpRoFUsyaBZHQKPL0VGCqZN1fZQoaAZoCWgPQwiBkgILYAoBwJSGlFKUaBVLMmgWR0Cjy27ZWaMKdX2UKGgGaAloD0MICqGDLuFQ8L+UhpRSlGgVSzJoFkdAo8rTPa+N+HV9lChoBmgJaA9DCPKaV3VWiwHAlIaUUpRoFUsyaBZHQKPNLILgGbF1fZQoaAZoCWgPQwiGdePdkbH3v5SGlFKUaBVLMmgWR0CjzPBdD6WPdX2UKGgGaAloD0MI9DRgkPTp+7+UhpRSlGgVSzJoFkdAo8yN5rxiG3V9lChoBmgJaA9DCPD5YYTwqPG/lIaUUpRoFUsyaBZHQKPL8lUp/gB1fZQoaAZoCWgPQwgWp1oLs9D0v5SGlFKUaBVLMmgWR0Cjzj7Ackt3dX2UKGgGaAloD0MI/KVFfZJ7/r+UhpRSlGgVSzJoFkdAo84CmVJL/XV9lChoBmgJaA9DCChk521s9uq/lIaUUpRoFUsyaBZHQKPNoBp5/sp1fZQoaAZoCWgPQwgOiBBXzl7vv5SGlFKUaBVLMmgWR0CjzQR7qptKdX2UKGgGaAloD0MIY35uaMqO9L+UhpRSlGgVSzJoFkdAo89V98Z1m3V9lChoBmgJaA9DCDo8hPHTOOe/lIaUUpRoFUsyaBZHQKPPGeuFHrh1fZQoaAZoCWgPQwgj9gmgGFn3v5SGlFKUaBVLMmgWR0CjzregDifhdX2UKGgGaAloD0MIvD0IAflSBMCUhpRSlGgVSzJoFkdAo84cIeHSGHV9lChoBmgJaA9DCDqTNlX3SPi/lIaUUpRoFUsyaBZHQKPQa7NB4Ux1fZQoaAZoCWgPQwh9BWnGoukGwJSGlFKUaBVLMmgWR0Cj0C+CK77LdX2UKGgGaAloD0MIbf/KSpPS57+UhpRSlGgVSzJoFkdAo8/NHrhR7HV9lChoBmgJaA9DCFtCPujZrPW/lIaUUpRoFUsyaBZHQKPPMZAprk91fZQoaAZoCWgPQwhgdeRIZyDxv5SGlFKUaBVLMmgWR0Cj0YgGKQ7tdX2UKGgGaAloD0MI2GMipdn8AsCUhpRSlGgVSzJoFkdAo9FMMEzO5nV9lChoBmgJaA9DCBd+cD51LADAlIaUUpRoFUsyaBZHQKPQ6g4ffXR1fZQoaAZoCWgPQwjDvMeZJuzjv5SGlFKUaBVLMmgWR0Cj0E66z3RHdX2UKGgGaAloD0MIZryt9Nrs+r+UhpRSlGgVSzJoFkdAo9KZfnfVJHV9lChoBmgJaA9DCHuH26FhEQrAlIaUUpRoFUsyaBZHQKPSXVFQVKx1fZQoaAZoCWgPQwigbqDAO/n2v5SGlFKUaBVLMmgWR0Cj0fq2KEWZdX2UKGgGaAloD0MIqP5BJEOO+b+UhpRSlGgVSzJoFkdAo9Ffj2i+L3V9lChoBmgJaA9DCNL7xteeGfa/lIaUUpRoFUsyaBZHQKPTpHpbD/F1fZQoaAZoCWgPQwg+rg0V43z2v5SGlFKUaBVLMmgWR0Cj02gzHjp+dX2UKGgGaAloD0MI+glnt5bJ67+UhpRSlGgVSzJoFkdAo9MFzr/sFHV9lChoBmgJaA9DCNmz5zI1Ceq/lIaUUpRoFUsyaBZHQKPSajASFoN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2f98ddc670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2f98dd7300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674980570112989458, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANfjUPhXv3jpzRAI/NfjUPhXv3jpzRAI/NfjUPhXv3jpzRAI/NfjUPhXv3jpzRAI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALBaxP7WUsT+pNr4/KG1vPzRf9rzzeoo+3PLJPzXf8b3/Kzs88VttP5XGw7+tHsC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA1+NQ+Fe/eOnNEAj9Hvqk7bLadOTcoJTw1+NQ+Fe/eOnNEAj9Hvqk7bLadOTcoJTw1+NQ+Fe/eOnNEAj9Hvqk7bLadOTcoJTw1+NQ+Fe/eOnNEAj9Hvqk7bLadOTcoJTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41595617 0.00170085 0.50885695]\n [0.41595617 0.00170085 0.50885695]\n [0.41595617 0.00170085 0.50885695]\n [0.41595617 0.00170085 0.50885695]]", "desired_goal": "[[ 1.3834891 1.3873507 1.4860431 ]\n [ 0.93525934 -0.03007469 0.27046928]\n [ 1.577724 -0.11810151 0.01142406]\n [ 0.92718416 -1.5294977 -1.5009362 ]]", "observation": "[[4.1595617e-01 1.7008508e-03 5.0885695e-01 5.1801535e-03 3.0081288e-04\n 1.0080389e-02]\n [4.1595617e-01 1.7008508e-03 5.0885695e-01 5.1801535e-03 3.0081288e-04\n 1.0080389e-02]\n [4.1595617e-01 1.7008508e-03 5.0885695e-01 5.1801535e-03 3.0081288e-04\n 1.0080389e-02]\n [4.1595617e-01 1.7008508e-03 5.0885695e-01 5.1801535e-03 3.0081288e-04\n 1.0080389e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABdZsORLyGL5XQQs+SwrpPSCVE7xqHZw9htHFPeIs972V+Tk+TplJvW7+vL0a7Fo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00022586 -0.14936092 0.13599144]\n [ 0.11378916 -0.00900772 0.07622798]\n [ 0.09659104 -0.12069108 0.18161614]\n [-0.04921847 -0.09228216 0.21379128]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZM+ey9Sk6b+UhpRSlIwBbJRLMowBdJRHQJRa2LZSNwR1fZQoaAZoCWgPQwiL/tDMk2vlv5SGlFKUaBVLMmgWR0CUWlT3IuGsdX2UKGgGaAloD0MI5A8GnnuP5b+UhpRSlGgVSzJoFkdAlFnUxmCiAXV9lChoBmgJaA9DCKZIvhJIieq/lIaUUpRoFUsyaBZHQJRZTpC8e0Z1fZQoaAZoCWgPQwhZFeEmo8rRv5SGlFKUaBVLMmgWR0CUXSF7laKUdX2UKGgGaAloD0MIHXbfMTz23r+UhpRSlGgVSzJoFkdAlFyeJtSAH3V9lChoBmgJaA9DCGmM1lHVhOe/lIaUUpRoFUsyaBZHQJRcHJKaodd1fZQoaAZoCWgPQwgaTwRxHk7jv5SGlFKUaBVLMmgWR0CUW5SVGCqZdX2UKGgGaAloD0MII0xRLo1f4b+UhpRSlGgVSzJoFkdAlF9lv/BFeHV9lChoBmgJaA9DCBAhrpy9s+C/lIaUUpRoFUsyaBZHQJRe40YTCch1fZQoaAZoCWgPQwi8df7tsl/Qv5SGlFKUaBVLMmgWR0CUXmMXJo0zdX2UKGgGaAloD0MIJ4i6D0Dq5r+UhpRSlGgVSzJoFkdAlF3baRISUXV9lChoBmgJaA9DCDj3V4/7Vuy/lIaUUpRoFUsyaBZHQJRhn/BFd9l1fZQoaAZoCWgPQwiRKLSs+8fhv5SGlFKUaBVLMmgWR0CUYRzLwF1TdX2UKGgGaAloD0MIob36eOi71r+UhpRSlGgVSzJoFkdAlGCbe/Ho5nV9lChoBmgJaA9DCIknu5nRj9e/lIaUUpRoFUsyaBZHQJRgE7KaG6B1fZQoaAZoCWgPQwiWr8vwn27cv5SGlFKUaBVLMmgWR0CUY+YWLxZudX2UKGgGaAloD0MIc2n8witJ17+UhpRSlGgVSzJoFkdAlGNiay8jA3V9lChoBmgJaA9DCCDPLt/6MOq/lIaUUpRoFUsyaBZHQJRi4OmR/3F1fZQoaAZoCWgPQwiFBfcDHhjUv5SGlFKUaBVLMmgWR0CUYlk4FRpDdX2UKGgGaAloD0MINnhflQuV2L+UhpRSlGgVSzJoFkdAlGYkQf6oEXV9lChoBmgJaA9DCD27fOvDet2/lIaUUpRoFUsyaBZHQJRloMYuTRp1fZQoaAZoCWgPQwgXnpeKjXngv5SGlFKUaBVLMmgWR0CUZR9ZRsMzdX2UKGgGaAloD0MIfCjRksfT2r+UhpRSlGgVSzJoFkdAlGSXe3x4IXV9lChoBmgJaA9DCFTHKqVn+ui/lIaUUpRoFUsyaBZHQJRobzSThYN1fZQoaAZoCWgPQwh23VuRmKDTv5SGlFKUaBVLMmgWR0CUZ+vLX+VDdX2UKGgGaAloD0MIGhpPBHEe0r+UhpRSlGgVSzJoFkdAlGdqNVBD5XV9lChoBmgJaA9DCJazd0Zbld6/lIaUUpRoFUsyaBZHQJRm4liSaE11fZQoaAZoCWgPQwi3C811Gmnhv5SGlFKUaBVLMmgWR0CUapsE7nxKdX2UKGgGaAloD0MIBFlPrb6617+UhpRSlGgVSzJoFkdAlGoXN1QqJHV9lChoBmgJaA9DCFq5F5gVity/lIaUUpRoFUsyaBZHQJRplbxEv011fZQoaAZoCWgPQwiaIsDpXTznv5SGlFKUaBVLMmgWR0CUaQ2dNFjNdX2UKGgGaAloD0MIPs+fNqrT07+UhpRSlGgVSzJoFkdAlGzSu2Zy/HV9lChoBmgJaA9DCCLElbN3Rt2/lIaUUpRoFUsyaBZHQJRsT/JeVs11fZQoaAZoCWgPQwjL9iFvufrVv5SGlFKUaBVLMmgWR0CUa87TDwYtdX2UKGgGaAloD0MIjsu4qYHmz7+UhpRSlGgVSzJoFkdAlGtHFkxyn3V9lChoBmgJaA9DCJLoZRTLLde/lIaUUpRoFUsyaBZHQJRvIDNhVlx1fZQoaAZoCWgPQwiOAkTBjCnWv5SGlFKUaBVLMmgWR0CUbpyHmA9WdX2UKGgGaAloD0MI+tLbn4uG5r+UhpRSlGgVSzJoFkdAlG4a64Ds+nV9lChoBmgJaA9DCP2H9NvXAeC/lIaUUpRoFUsyaBZHQJRtku3+dbx1fZQoaAZoCWgPQwgLQnkfR/Phv5SGlFKUaBVLMmgWR0CUcWInSfDldX2UKGgGaAloD0MIBW1y+KQT7r+UhpRSlGgVSzJoFkdAlHDerZJ04nV9lChoBmgJaA9DCHk7wmnBi9u/lIaUUpRoFUsyaBZHQJRwXTEzfrN1fZQoaAZoCWgPQwg6WWq932jev5SGlFKUaBVLMmgWR0CUb9VVxS5zdX2UKGgGaAloD0MIJPCHn/8e07+UhpRSlGgVSzJoFkdAlHO0xASnL3V9lChoBmgJaA9DCBDLZg5JLeG/lIaUUpRoFUsyaBZHQJRzMUSIxg11fZQoaAZoCWgPQwiXPJ6WH7jdv5SGlFKUaBVLMmgWR0CUcq/echC/dX2UKGgGaAloD0MIPKWD9X8O0b+UhpRSlGgVSzJoFkdAlHIn5zo2XXV9lChoBmgJaA9DCDtxOV6B6Ny/lIaUUpRoFUsyaBZHQJR2J5a/yoZ1fZQoaAZoCWgPQwjv5xTkZ6Pjv5SGlFKUaBVLMmgWR0CUdabrC3w1dX2UKGgGaAloD0MIfqg0Ymaf6L+UhpRSlGgVSzJoFkdAlHUmvnr6cnV9lChoBmgJaA9DCMpt+x711++/lIaUUpRoFUsyaBZHQJR0oAU+LWJ1fZQoaAZoCWgPQwjovwevXdriv5SGlFKUaBVLMmgWR0CUeJkc0cfedX2UKGgGaAloD0MIxty1hHxQ6r+UhpRSlGgVSzJoFkdAlHgVfeDWb3V9lChoBmgJaA9DCF02OuenuOu/lIaUUpRoFUsyaBZHQJR3lDVpbll1fZQoaAZoCWgPQwjc9j3qr9fgv5SGlFKUaBVLMmgWR0CUdwumJm/WdX2UKGgGaAloD0MI6Nms+lxt4r+UhpRSlGgVSzJoFkdAlHqsbzbvgHV9lChoBmgJaA9DCJuvko/dBee/lIaUUpRoFUsyaBZHQJR6KMfigkF1fZQoaAZoCWgPQwhyUMJM27/vv5SGlFKUaBVLMmgWR0CUeacSoOx0dX2UKGgGaAloD0MIWtk+5C1X1L+UhpRSlGgVSzJoFkdAlHkeqrBCU3V9lChoBmgJaA9DCAwDllzF4uW/lIaUUpRoFUsyaBZHQJR88HPeHi51fZQoaAZoCWgPQwiVYHE48yvjv5SGlFKUaBVLMmgWR0CUfGzbeuV5dX2UKGgGaAloD0MIe4hGdxA76b+UhpRSlGgVSzJoFkdAlHvrHAAQx3V9lChoBmgJaA9DCOpZEMr7uOu/lIaUUpRoFUsyaBZHQJR7Y2l2vB91fZQoaAZoCWgPQwiwc9NmnAbrv5SGlFKUaBVLMmgWR0CUfxLf1pTNdX2UKGgGaAloD0MINPW6RWBs8b+UhpRSlGgVSzJoFkdAlH6OtKZlWnV9lChoBmgJaA9DCI8YPbfQld6/lIaUUpRoFUsyaBZHQJR+Dck+otN1fZQoaAZoCWgPQwiIZTOHpBbmv5SGlFKUaBVLMmgWR0CUfYXLeQ+2dX2UKGgGaAloD0MIpg2HpYGf6L+UhpRSlGgVSzJoFkdAlIFJB1LamHV9lChoBmgJaA9DCGVyameY2t6/lIaUUpRoFUsyaBZHQJSAxTVDrqt1fZQoaAZoCWgPQwjb/L/qyJHkv5SGlFKUaBVLMmgWR0CUgEPM0P6LdX2UKGgGaAloD0MIIvyLoDGT4r+UhpRSlGgVSzJoFkdAlH+79qDbrXV9lChoBmgJaA9DCDp5kQn4teO/lIaUUpRoFUsyaBZHQJSDjdqL0jF1fZQoaAZoCWgPQwiZRpOLMTDkv5SGlFKUaBVLMmgWR0CUgwp+MIeHdX2UKGgGaAloD0MIVFT9SufD2r+UhpRSlGgVSzJoFkdAlIKIs7MgU3V9lChoBmgJaA9DCF+0xwvp8NS/lIaUUpRoFUsyaBZHQJSCAP4EfT11fZQoaAZoCWgPQwhqUDQPYJHTv5SGlFKUaBVLMmgWR0CUhcf2K2rodX2UKGgGaAloD0MINiGtMeiE1L+UhpRSlGgVSzJoFkdAlIVEaVD8cnV9lChoBmgJaA9DCFt7n6pCg+S/lIaUUpRoFUsyaBZHQJSEwwIt16p1fZQoaAZoCWgPQwisxhLWxtjQv5SGlFKUaBVLMmgWR0CUhDs7uDzzdX2UKGgGaAloD0MIn8n+eRow1r+UhpRSlGgVSzJoFkdAlIgZ1q33H3V9lChoBmgJaA9DCIBHVKhuLu6/lIaUUpRoFUsyaBZHQJSHlqxkd3l1fZQoaAZoCWgPQwhMOPQWD+/Rv5SGlFKUaBVLMmgWR0CUhxWJ79hrdX2UKGgGaAloD0MIRDNPrimQx7+UhpRSlGgVSzJoFkdAlIaN4JNTLnV9lChoBmgJaA9DCOli00ohkNq/lIaUUpRoFUsyaBZHQJSKjqcEvCd1fZQoaAZoCWgPQwjRyVLr/UbTv5SGlFKUaBVLMmgWR0CUigtSQ5mzdX2UKGgGaAloD0MIAKyOHOkM1r+UhpRSlGgVSzJoFkdAlImKAWi1zHV9lChoBmgJaA9DCEypS8YxEvO/lIaUUpRoFUsyaBZHQJSJAmQbMot1fZQoaAZoCWgPQwhDHVa45ePwv5SGlFKUaBVLMmgWR0CUjOKbayrxdX2UKGgGaAloD0MIexUZHZCE5r+UhpRSlGgVSzJoFkdAlIxe18b70nV9lChoBmgJaA9DCLxXrUz4peS/lIaUUpRoFUsyaBZHQJSL3VVghKV1fZQoaAZoCWgPQwhZMPFHUSf0v5SGlFKUaBVLMmgWR0CUi1U/wAlwdX2UKGgGaAloD0MI6wHzkCnf8b+UhpRSlGgVSzJoFkdAlI8UKZ2IPHV9lChoBmgJaA9DCI6wqIjTSd6/lIaUUpRoFUsyaBZHQJSOkJlar3l1fZQoaAZoCWgPQwhGBrmLMMXnv5SGlFKUaBVLMmgWR0CUjg8Sf16FdX2UKGgGaAloD0MIrU85Jot76r+UhpRSlGgVSzJoFkdAlI2G9lEqlXV9lChoBmgJaA9DCPQz9bpF4OO/lIaUUpRoFUsyaBZHQJSRUlqrR0F1fZQoaAZoCWgPQwhiTWVR2MXgv5SGlFKUaBVLMmgWR0CUkM64lQdkdX2UKGgGaAloD0MIiV+xhouc97+UhpRSlGgVSzJoFkdAlJBNDQZ4wHV9lChoBmgJaA9DCKH3xhAAnOu/lIaUUpRoFUsyaBZHQJSPxSiudPN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.811048148071859, "std_reward": 0.46330149049246205, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-29T08:46:10.501553"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7de15e31e910b107b27d321ce2fdf99eac79b5528bb8a8049b18324fed229e06
|
3 |
size 3056
|