--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer datasets: - shipping_label_ner metrics: - precision - recall - f1 - accuracy model-index: - name: ner_bert_model results: - task: name: Token Classification type: token-classification dataset: name: shipping_label_ner type: shipping_label_ner config: shipping_label_ner split: validation args: shipping_label_ner metrics: - name: Precision type: precision value: 0.5178571428571429 - name: Recall type: recall value: 0.7837837837837838 - name: F1 type: f1 value: 0.6236559139784947 - name: Accuracy type: accuracy value: 0.7796610169491526 --- # ner_bert_model This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the shipping_label_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.7118 - Precision: 0.5179 - Recall: 0.7838 - F1: 0.6237 - Accuracy: 0.7797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 7 | 1.8106 | 0.0 | 0.0 | 0.0 | 0.5169 | | No log | 2.0 | 14 | 1.6175 | 0.5556 | 0.1351 | 0.2174 | 0.5932 | | No log | 3.0 | 21 | 1.3124 | 0.6 | 0.2432 | 0.3462 | 0.6441 | | No log | 4.0 | 28 | 1.1318 | 0.6471 | 0.5946 | 0.6197 | 0.8051 | | No log | 5.0 | 35 | 0.9306 | 0.6176 | 0.5676 | 0.5915 | 0.7881 | | No log | 6.0 | 42 | 0.8279 | 0.5476 | 0.6216 | 0.5823 | 0.7712 | | No log | 7.0 | 49 | 0.7609 | 0.5952 | 0.6757 | 0.6329 | 0.7881 | | No log | 8.0 | 56 | 0.7484 | 0.6327 | 0.8378 | 0.7209 | 0.8220 | | No log | 9.0 | 63 | 0.7035 | 0.6596 | 0.8378 | 0.7381 | 0.8220 | | No log | 10.0 | 70 | 0.7281 | 0.5741 | 0.8378 | 0.6813 | 0.7881 | | No log | 11.0 | 77 | 0.6970 | 0.5741 | 0.8378 | 0.6813 | 0.7881 | | No log | 12.0 | 84 | 0.6790 | 0.5 | 0.7568 | 0.6022 | 0.7881 | | No log | 13.0 | 91 | 0.7124 | 0.4828 | 0.7568 | 0.5895 | 0.7712 | | No log | 14.0 | 98 | 0.6770 | 0.5 | 0.7568 | 0.6022 | 0.7797 | | No log | 15.0 | 105 | 0.7219 | 0.5179 | 0.7838 | 0.6237 | 0.7797 | | No log | 16.0 | 112 | 0.6695 | 0.5273 | 0.7838 | 0.6304 | 0.7881 | | No log | 17.0 | 119 | 0.6885 | 0.5179 | 0.7838 | 0.6237 | 0.7797 | | No log | 18.0 | 126 | 0.7138 | 0.5088 | 0.7838 | 0.6170 | 0.7712 | | No log | 19.0 | 133 | 0.7113 | 0.5179 | 0.7838 | 0.6237 | 0.7797 | | No log | 20.0 | 140 | 0.7118 | 0.5179 | 0.7838 | 0.6237 | 0.7797 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2