--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer datasets: - shipping_label_ner metrics: - precision - recall - f1 - accuracy model-index: - name: ner_bert_model results: - task: name: Token Classification type: token-classification dataset: name: shipping_label_ner type: shipping_label_ner config: shipping_label_ner split: validation args: shipping_label_ner metrics: - name: Precision type: precision value: 0.5178571428571429 - name: Recall type: recall value: 0.7837837837837838 - name: F1 type: f1 value: 0.6236559139784947 - name: Accuracy type: accuracy value: 0.7627118644067796 --- # ner_bert_model This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the shipping_label_ner dataset. It achieves the following results on the evaluation set: - Loss: 1.2010 - Precision: 0.5179 - Recall: 0.7838 - F1: 0.6237 - Accuracy: 0.7627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 14 | 0.6828 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | | No log | 2.0 | 28 | 0.8587 | 0.5273 | 0.7838 | 0.6304 | 0.7712 | | No log | 3.0 | 42 | 0.7206 | 0.5577 | 0.7838 | 0.6517 | 0.8136 | | No log | 4.0 | 56 | 0.8983 | 0.5370 | 0.7838 | 0.6374 | 0.7797 | | No log | 5.0 | 70 | 0.6964 | 0.5472 | 0.7838 | 0.6444 | 0.8051 | | No log | 6.0 | 84 | 0.9793 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | | No log | 7.0 | 98 | 0.6047 | 0.5472 | 0.7838 | 0.6444 | 0.8051 | | No log | 8.0 | 112 | 1.0809 | 0.5179 | 0.7838 | 0.6237 | 0.7797 | | No log | 9.0 | 126 | 1.1726 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | | No log | 10.0 | 140 | 1.0067 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | | No log | 11.0 | 154 | 1.1439 | 0.5088 | 0.7838 | 0.6170 | 0.7627 | | No log | 12.0 | 168 | 0.8971 | 0.5370 | 0.7838 | 0.6374 | 0.7881 | | No log | 13.0 | 182 | 1.0603 | 0.5179 | 0.7838 | 0.6237 | 0.7542 | | No log | 14.0 | 196 | 1.2095 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | | No log | 15.0 | 210 | 1.2395 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | | No log | 16.0 | 224 | 1.2509 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | | No log | 17.0 | 238 | 1.2317 | 0.5179 | 0.7838 | 0.6237 | 0.7542 | | No log | 18.0 | 252 | 1.2656 | 0.5179 | 0.7838 | 0.6237 | 0.7542 | | No log | 19.0 | 266 | 1.1950 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | | No log | 20.0 | 280 | 1.2010 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2