--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: results results: [] --- # results This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2762 - Accuracy: 0.7751 - F1: 0.5205 - Precision: 0.5180 - Recall: 0.5235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0829 | 1.0 | 612 | 1.0975 | 0.7771 | 0.6970 | 0.6937 | 0.7030 | | 0.0937 | 2.0 | 1224 | 1.2088 | 0.7800 | 0.5233 | 0.5252 | 0.5219 | | 0.0626 | 3.0 | 1836 | 1.2762 | 0.7751 | 0.5205 | 0.5180 | 0.5235 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.1.2 - Datasets 2.19.0 - Tokenizers 0.19.1