--- license: openrail --- ``` import torch from transformers import AutoTokenizer, MobileBertForSequenceClassification device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load the saved model model_name = 'harshith20/Emotion_predictor' tokenizer = AutoTokenizer.from_pretrained(model_name) model = MobileBertForSequenceClassification.from_pretrained(model_name) # Tokenize input text input_text = "I am feeling happy today" input_ids = tokenizer.encode(input_text, add_special_tokens=True, truncation=True, max_length=128) input_tensor = torch.tensor([input_ids]).to(device) # Predict emotion with torch.no_grad(): outputs = model(input_tensor) logits = outputs[0] # Get the predicted label predicted_emotion = torch.argmax(logits, dim=1).item() emotion_labels = {0:'sadness',1:'joy',2:'love',3:'anger',4:'fear',5:'surprise'} predicted_emotion_label = emotion_labels[predicted_emotion] print(f"Input text: {input_text}") print(f"Predicted emotion: {predicted_emotion_label}")```