ppo-LunarLander-v2 / config.json
hartemj's picture
Upload PPO LunarLander-v2 trained agent
55e92af
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e1d324430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e1d3244c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e1d324550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e1d3245e0>", "_build": "<function ActorCriticPolicy._build at 0x7f5e1d324670>", "forward": "<function ActorCriticPolicy.forward at 0x7f5e1d324700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5e1d324790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e1d324820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5e1d3248b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e1d324940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e1d3249d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e1d324a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5e1d320c00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690542698576602321, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpF1buup5C6gUKlO3nebzg+rwy7TQlXugAAgD8AAIA/AAWzPXvClbq+dIe6q2CMN0z14LreVJU5AAAAAAAAgD+ainQ9KehnusDUrji+rqUzmkeNurhIzbcAAIA/AACAP2bQvrw2VGC8JSeHPv1aGr41fSO9hwMBvwAAgD8AAIA/M6uQu0jTj7qWvjY3ButzM+pCxrqG+1O2AACAPwAAgD/TjhQ+SNPIum50iLlmsD81vea2u/ohnTgAAIA/AACAPybkvD2Pox8+jToSveUuGL6Oz0G8vz4yPAAAAAAAAAAARl0QPuzAlbsxDoq5naz8Nts067xReKs4AACAPwAAgD+NA7M9hfP8uZm9E7hVlVYweuDLu3JGLzcAAIA/AAAAALrLJb5unIS8+o++Ot/r8DidvOg9dlABugAAgD8AAIA/mveqvHsU6jemWho43kXtMi2YATvY2ja3AACAPwAAgD/zj6a94ZiFuhljn7rrTaK1T6PnuTuEuTkAAIA/AACAP/P4oT3tdXI/Ao8EPkoUyL64O1k9KzvFOwAAAAAAAAAAmqk+O64nhrjLKGg8Pc4YtqgOOzoLwRe1AACAPwAAgD+NFJE92VGgP8TKlD7jZdi+oM1/PYzhqT0AAAAAAAAAAM0Mub0pxDq65v47vDUnrbRLuCi7sMgfNAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGfkky+HrQiMAWyUTegDjAF0lEdAmbMkwrUb1nV9lChoBkdAaAFYI0IkaGgHTegDaAhHQJmzhY8uBc11fZQoaAZHQGR3e67NB4VoB03oA2gIR0CZt5LNOdoWdX2UKGgGR0BkOs+qzZ6EaAdN6ANoCEdAmb1Lkjopx3V9lChoBkdAZQ4MqBmPHWgHTegDaAhHQJm+bsfJV811fZQoaAZHwDOR/kNnXd1oB0vaaAhHQJnBT90ihWZ1fZQoaAZHQGR2KArhBJJoB03oA2gIR0CZxJpeeFtbdX2UKGgGR0BgsfXbuc+aaAdN6ANoCEdAmcopmRNh3XV9lChoBkdAZV7cAR02cmgHTegDaAhHQJnLmi35N491fZQoaAZHQGHx1h9b5dpoB03oA2gIR0CZ0lTHbRF7dX2UKGgGR0BkngsGxD9gaAdN6ANoCEdAmdRPViF0xXV9lChoBkdAY9/6sySFG2gHTegDaAhHQJnt7wLE1l51fZQoaAZHQGQojneSB9VoB03oA2gIR0CZ8QD1GsmwdX2UKGgGR0Bns7pA2Q4kaAdN6ANoCEdAmffbobGWEHV9lChoBkdAZaNrAP/aQGgHTegDaAhHQJn8W/wiJO51fZQoaAZHQGM6HS4OMERoB03oA2gIR0CZ/qIcR15jdX2UKGgGR0Bhgy3AmAskaAdN6ANoCEdAmgRkaAFxGXV9lChoBkdAPFV+7UXpGGgHS9xoCEdAmgSuH8CPqHV9lChoBkdAZnIPUaya/mgHTegDaAhHQJoE6fK6nR91fZQoaAZHQGZx1yeZof1oB03oA2gIR0CaCPQzUI9ldX2UKGgGR0Bl1zx7RfF8aAdN6ANoCEdAmg3GZZ0Sy3V9lChoBkdAXwZQsPJ7s2gHTegDaAhHQJoOsqBmPHV1fZQoaAZHQGdp+kP+XJJoB03oA2gIR0CaEN1og3cYdX2UKGgGR0BkOTKkl/pdaAdN6ANoCEdAmhMsSkCV8nV9lChoBkdAYRGv9tMwlGgHTegDaAhHQJoYrFo+Ofd1fZQoaAZHQGFTTeXRgJFoB03oA2gIR0CaGiwAU+LWdX2UKGgGR0BoeLzZpSJkaAdN6ANoCEdAmiKQpz90inV9lChoBkdAYi8lTFVDKGgHTegDaAhHQJolyRq46Op1fZQoaAZHQGO6pAt4A0doB03oA2gIR0CaQh8e0XxfdX2UKGgGR0BjhSeqaPS2aAdN6ANoCEdAmkTPo7muDHV9lChoBkdAYTBa4+bExmgHTegDaAhHQJpPexZ+x4Z1fZQoaAZHQGPKOuA7PppoB03oA2gIR0CaUlazu4PPdX2UKGgGR0BerDUAksz3aAdN6ANoCEdAmlq16iTMaHV9lChoBkdAZkNHAh0QsmgHTegDaAhHQJpbMJY1YQt1fZQoaAZHQGTe2SEDhcZoB03oA2gIR0CaW4hTOxB3dX2UKGgGR0Bk8gDcM3IdaAdN6ANoCEdAmmFmWyC4BnV9lChoBkdAYZocSXdCV2gHTegDaAhHQJpmdzvJA+p1fZQoaAZHQGZcySNfgJloB03oA2gIR0CaZ2Q0GeMAdX2UKGgGR0BbGDvqkdmyaAdN6ANoCEdAmmmIV6/qPnV9lChoBkdAaBY0eEIw/WgHTegDaAhHQJpr+j/Mnqp1fZQoaAZHQGXKot+TeO5oB03oA2gIR0CachhBJI1+dX2UKGgGR0BgRUiSq2jPaAdN6ANoCEdAmnOw2Ifr8nV9lChoBkdAZKC2sJY1YWgHTegDaAhHQJp7VX/5tWN1fZQoaAZHQGMnxh+fAbhoB03oA2gIR0CafYVJtix3dX2UKGgGR0Bhuju6VdHEaAdN6ANoCEdAmoXjKPn0TXV9lChoBkdAY5F5/smfG2gHTegDaAhHQJqclybQTmJ1fZQoaAZHQG99zfrKNhpoB01oA2gIR0CannKJ2t+1dX2UKGgGR8AgGB19v0iAaAdL6GgIR0CaqYdY4hlldX2UKGgGR0Blm/0XgtOEaAdN6ANoCEdAmqmrFOwgT3V9lChoBkdAYoYYkVvddmgHTegDaAhHQJqwzw2ETQF1fZQoaAZHQGQI2pQ1rIpoB03oA2gIR0CasTUO/cnFdX2UKGgGR0Bi47nV5KODaAdN6ANoCEdAmrGAWSEDhnV9lChoBkdAYlkQ0XP7emgHTegDaAhHQJq2RqEeyRl1fZQoaAZHQGJa1dPci4doB03oA2gIR0CavAzqKP4mdX2UKGgGR0Bj9RtWMju8aAdN6ANoCEdAmr02KVII4XV9lChoBkfAKckGqxTsIGgHS8ZoCEdAmr8wgPmPo3V9lChoBkdAX87TVlPJrGgHTegDaAhHQJrAWGahHsl1fZQoaAZHQDfjxb0OEuhoB0vmaAhHQJrBJ0vGp/B1fZQoaAZHQGJgX7+DOC5oB03oA2gIR0Caw7cwxnFpdX2UKGgGR0Bhv/LaEi+taAdN6ANoCEdAmsoddu5z53V9lChoBkdAZFLN7jT8YWgHTegDaAhHQJrLpQsPJ7t1fZQoaAZHQGH3ojOcDr9oB03oA2gIR0Ca02gLJCBxdX2UKGgGR0Bivgs9SuQqaAdN6ANoCEdAmtXpwCKaX3V9lChoBkdAXVANNJvo/2gHTegDaAhHQJrhkPuogmt1fZQoaAZHQGQaSlWOp85oB03oA2gIR0Ca9svwVj7RdX2UKGgGR0BsqwKtxMnJaAdNIwNoCEdAmvzAnQY1pHV9lChoBkdAYA44JeE7GWgHTegDaAhHQJsDVb4agmJ1fZQoaAZHQGfapjlPrOZoB03oA2gIR0CbA3t2cJ+ldX2UKGgGR0BvYj0e2d/baAdN6QJoCEdAmwVKzAvcrXV9lChoBkdAX3XgAIY3vWgHTegDaAhHQJsQOHHmzSl1fZQoaAZHQCtOYc/+sHVoB0vraAhHQJsUCSU1Q691fZQoaAZHQF+SECvHLidoB03oA2gIR0CbFkTkhib2dX2UKGgGR0BjIeXu3MINaAdN6ANoCEdAmxkNtMwlB3V9lChoBkdAYHy73fyf+WgHTegDaAhHQJsZ/vBrN4Z1fZQoaAZHQGePXXqZ+hJoB03oA2gIR0CbGrejVQQ+dX2UKGgGR0BnACGJvYOEaAdN6ANoCEdAmxy+Vs1sL3V9lChoBkdAXGZh5Pdl/mgHTegDaAhHQJsjmmUGFBZ1fZQoaAZHQGfT77bcoH9oB03oA2gIR0CbJe76pHZsdX2UKGgGR0BEVZimVJL/aAdL52gIR0CbKihfShJzdX2UKGgGR0BjgABmwqy4aAdN6ANoCEdAmy/i2MKkVXV9lChoBkdAYhlCa7VawGgHTegDaAhHQJsyLIn0Cih1fZQoaAZHQGYQ5AhStNloB03oA2gIR0CbPS+vQnhLdX2UKGgGR0BlkH5WRzRyaAdN6ANoCEdAm1C+98JD3XV9lChoBkdAZFyEvCdjG2gHTegDaAhHQJtWgg4ffXR1fZQoaAZHQGEFdWZJCjVoB03oA2gIR0CbX8Mmnfl7dX2UKGgGR0BkZbpiZv1laAdN6ANoCEdAm2IRP420iXV9lChoBkdAZtSR7qptJmgHTegDaAhHQJtsTeDWbw11fZQoaAZHQGRkuxbB42VoB03oA2gIR0Cbb9csUZeidX2UKGgGR0Bf18pobn5jaAdN6ANoCEdAm3HQjlgc+HV9lChoBkdAQvDLbHp8nmgHTREBaAhHQJtyKkFfReF1fZQoaAZHQGZGoeHSF49oB03oA2gIR0CbdNnoxHoYdX2UKGgGR0Bg8+uFHrhSaAdN6ANoCEdAm3Vy/fwZwXV9lChoBkdAYEAfT1CgLGgHTegDaAhHQJt3Qdmxt551fZQoaAZHQGYFeokzGgloB03oA2gIR0CbfMOdGy5adX2UKGgGR0BmewVfu1F6aAdN6ANoCEdAm34+/UONHnV9lChoBkdAYseyB06o2mgHTegDaAhHQJuBRzhgmZ51fZQoaAZHQGH7Bh6Skj5oB03oA2gIR0CbhcFEiMYNdX2UKGgGR0BitzEtNBWxaAdN6ANoCEdAm4fsCDEm6XV9lChoBkdAXIZHI6r/82gHTegDaAhHQJuV/PUrkKh1fZQoaAZHQGGpQo9cKPZoB03oA2gIR0Cbl/TbnHNpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}