--- license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - massive metrics: - accuracy - f1 model-index: - name: scenario-MDBT-TCR_data-cl-massive_all_1_1 results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: all_1.1 split: validation args: all_1.1 metrics: - name: Accuracy type: accuracy value: 0.8000036435845584 - name: F1 type: f1 value: 0.758305292124411 --- # scenario-MDBT-TCR_data-cl-massive_all_1_1 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 1.3801 - Accuracy: 0.8000 - F1: 0.7583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 66 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.489 | 0.56 | 5000 | 0.9200 | 0.7871 | 0.7332 | | 0.2753 | 1.11 | 10000 | 1.0539 | 0.7885 | 0.7364 | | 0.2348 | 1.67 | 15000 | 1.0362 | 0.7891 | 0.7431 | | 0.1648 | 2.22 | 20000 | 1.1925 | 0.7867 | 0.7535 | | 0.1481 | 2.78 | 25000 | 1.1608 | 0.7920 | 0.7513 | | 0.1074 | 3.33 | 30000 | 1.3151 | 0.7966 | 0.7513 | | 0.0942 | 3.89 | 35000 | 1.3274 | 0.7952 | 0.7523 | | 0.0684 | 4.45 | 40000 | 1.3801 | 0.8000 | 0.7583 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3