File size: 2,777 Bytes
bc6f999 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: mit
base_model: facebook/xlm-v-base
tags:
- generated_from_trainer
datasets:
- massive
metrics:
- accuracy
- f1
model-index:
- name: scenario-TCR-XLMV-4_data-AmazonScience_massive_all_1_1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: massive
type: massive
config: all_1.1
split: validation
args: all_1.1
metrics:
- name: Accuracy
type: accuracy
value: 0.846210601990238
- name: F1
type: f1
value: 0.8244135214839245
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-TCR-XLMV-4_data-AmazonScience_massive_all_1_1
This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the massive dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8322
- Accuracy: 0.8462
- F1: 0.8244
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 777
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.595 | 0.27 | 5000 | 0.7040 | 0.8241 | 0.7720 |
| 0.4654 | 0.53 | 10000 | 0.6468 | 0.8410 | 0.8027 |
| 0.3838 | 0.8 | 15000 | 0.6802 | 0.8399 | 0.7994 |
| 0.2831 | 1.07 | 20000 | 0.7290 | 0.8471 | 0.8206 |
| 0.274 | 1.34 | 25000 | 0.7192 | 0.8471 | 0.8141 |
| 0.2598 | 1.6 | 30000 | 0.7145 | 0.8440 | 0.8215 |
| 0.2501 | 1.87 | 35000 | 0.7347 | 0.8500 | 0.8245 |
| 0.2022 | 2.14 | 40000 | 0.7809 | 0.8503 | 0.8223 |
| 0.2164 | 2.41 | 45000 | 0.7481 | 0.8533 | 0.8280 |
| 0.2008 | 2.67 | 50000 | 0.7684 | 0.8467 | 0.8252 |
| 0.2015 | 2.94 | 55000 | 0.8170 | 0.8422 | 0.8160 |
| 0.1716 | 3.21 | 60000 | 0.8603 | 0.8433 | 0.8186 |
| 0.1643 | 3.47 | 65000 | 0.8221 | 0.8514 | 0.8279 |
| 0.1816 | 3.74 | 70000 | 0.8322 | 0.8462 | 0.8244 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
|