File size: 2,328 Bytes
c95fc6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
datasets:
- massive
metrics:
- accuracy
- f1
model-index:
- name: scenario-TCR_data-cl-massive_all_1_1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: massive
type: massive
config: all_1.1
split: validation
args: all_1.1
metrics:
- name: Accuracy
type: accuracy
value: 0.7990745295221439
- name: F1
type: f1
value: 0.7564886611883039
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-TCR_data-cl-massive_all_1_1
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the massive dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3782
- Accuracy: 0.7991
- F1: 0.7565
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.4764 | 0.56 | 5000 | 0.9292 | 0.7898 | 0.7395 |
| 0.2624 | 1.11 | 10000 | 0.9850 | 0.7935 | 0.7392 |
| 0.2344 | 1.67 | 15000 | 1.0603 | 0.7976 | 0.7472 |
| 0.1556 | 2.22 | 20000 | 1.1387 | 0.7925 | 0.7431 |
| 0.1488 | 2.78 | 25000 | 1.1552 | 0.7960 | 0.7552 |
| 0.1048 | 3.33 | 30000 | 1.3310 | 0.7943 | 0.7452 |
| 0.101 | 3.89 | 35000 | 1.2902 | 0.7938 | 0.7516 |
| 0.0618 | 4.45 | 40000 | 1.3782 | 0.7991 | 0.7565 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
|