Edit model card

scenario-kd-pre-ner-full-mdeberta_data-univner_full44

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 46.6459
  • Precision: 0.8272
  • Recall: 0.8335
  • F1: 0.8303
  • Accuracy: 0.9822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 44
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
149.9231 0.2911 500 110.8748 0.5070 0.1208 0.1951 0.9347
101.1776 0.5822 1000 93.5222 0.7123 0.6586 0.6844 0.9701
89.9222 0.8732 1500 86.5450 0.7487 0.7276 0.7380 0.9748
83.6167 1.1643 2000 81.4135 0.7818 0.7501 0.7656 0.9769
78.8225 1.4554 2500 77.5955 0.7905 0.7547 0.7722 0.9777
75.3094 1.7465 3000 74.1885 0.7825 0.7798 0.7812 0.9783
71.9149 2.0375 3500 71.4168 0.7893 0.8020 0.7956 0.9790
68.8017 2.3286 4000 68.6904 0.8194 0.7778 0.7981 0.9794
66.2935 2.6197 4500 66.3018 0.7981 0.8070 0.8025 0.9802
64.1282 2.9108 5000 64.3227 0.7988 0.8130 0.8059 0.9803
61.983 3.2019 5500 62.6362 0.8141 0.8114 0.8128 0.9808
60.0914 3.4929 6000 60.8145 0.8106 0.8149 0.8127 0.9808
58.497 3.7840 6500 59.2819 0.8126 0.8158 0.8142 0.9812
57.0173 4.0751 7000 58.0187 0.8126 0.7990 0.8058 0.9804
55.5793 4.3662 7500 56.7794 0.8033 0.8240 0.8135 0.9808
54.4031 4.6573 8000 55.5089 0.8072 0.8287 0.8178 0.9812
53.2147 4.9483 8500 54.5450 0.8128 0.8094 0.8111 0.9810
52.0438 5.2394 9000 53.6043 0.8145 0.8222 0.8184 0.9814
51.102 5.5305 9500 52.6326 0.8100 0.8261 0.818 0.9811
50.3841 5.8216 10000 51.8428 0.8138 0.8300 0.8219 0.9815
49.4812 6.1126 10500 51.1615 0.8192 0.8296 0.8244 0.9819
48.7273 6.4037 11000 50.4750 0.8156 0.8201 0.8178 0.9813
48.1157 6.6948 11500 49.8869 0.8190 0.8259 0.8224 0.9818
47.4821 6.9859 12000 49.2946 0.8203 0.8279 0.8241 0.9819
46.889 7.2770 12500 48.8428 0.8178 0.8224 0.8201 0.9816
46.3939 7.5680 13000 48.3821 0.8264 0.8224 0.8244 0.9819
46.0878 7.8591 13500 47.9867 0.8210 0.8272 0.8241 0.9817
45.669 8.1502 14000 47.6715 0.8207 0.8257 0.8232 0.9818
45.3064 8.4413 14500 47.3744 0.8167 0.8336 0.8251 0.9818
45.0768 8.7324 15000 47.1812 0.8221 0.8235 0.8228 0.9821
44.8212 9.0234 15500 46.9769 0.8172 0.8274 0.8223 0.9816
44.6107 9.3145 16000 46.8141 0.8204 0.8298 0.8250 0.9819
44.4495 9.6056 16500 46.7872 0.8189 0.8285 0.8236 0.9819
44.51 9.8967 17000 46.6459 0.8272 0.8335 0.8303 0.9822

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
236M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-kd-pre-ner-full-mdeberta_data-univner_full44

Finetuned
(206)
this model