haryoaw commited on
Commit
2294f2b
1 Parent(s): 84dde90

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +102 -0
  2. config.json +53 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/mdeberta-v3-base
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-kd-pre-ner-full-mdeberta_data-univner_full44
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-kd-pre-ner-full-mdeberta_data-univner_full44
21
+
22
+ This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.2650
25
+ - Precision: 0.8107
26
+ - Recall: 0.8117
27
+ - F1: 0.8112
28
+ - Accuracy: 0.9806
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 32
50
+ - seed: 44
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 32
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 1.3559 | 0.2911 | 500 | 0.7891 | 0.4246 | 0.3525 | 0.3852 | 0.9433 |
62
+ | 0.7017 | 0.5822 | 1000 | 0.5422 | 0.6316 | 0.6298 | 0.6307 | 0.9646 |
63
+ | 0.528 | 0.8732 | 1500 | 0.4693 | 0.6856 | 0.6830 | 0.6843 | 0.9692 |
64
+ | 0.4354 | 1.1643 | 2000 | 0.4211 | 0.7101 | 0.7376 | 0.7236 | 0.9724 |
65
+ | 0.385 | 1.4554 | 2500 | 0.3893 | 0.7482 | 0.7374 | 0.7428 | 0.9747 |
66
+ | 0.3575 | 1.7465 | 3000 | 0.3713 | 0.7678 | 0.7331 | 0.7500 | 0.9752 |
67
+ | 0.3298 | 2.0375 | 3500 | 0.3550 | 0.7497 | 0.7800 | 0.7645 | 0.9761 |
68
+ | 0.2879 | 2.3286 | 4000 | 0.3492 | 0.7964 | 0.7367 | 0.7654 | 0.9763 |
69
+ | 0.2748 | 2.6197 | 4500 | 0.3272 | 0.7660 | 0.7924 | 0.7790 | 0.9782 |
70
+ | 0.2644 | 2.9108 | 5000 | 0.3192 | 0.7817 | 0.7811 | 0.7814 | 0.9779 |
71
+ | 0.2416 | 3.2019 | 5500 | 0.3239 | 0.8004 | 0.7681 | 0.7839 | 0.9782 |
72
+ | 0.2303 | 3.4929 | 6000 | 0.3085 | 0.7846 | 0.7966 | 0.7905 | 0.9787 |
73
+ | 0.2252 | 3.7840 | 6500 | 0.3051 | 0.7973 | 0.7883 | 0.7928 | 0.9787 |
74
+ | 0.2159 | 4.0751 | 7000 | 0.3045 | 0.7987 | 0.7908 | 0.7948 | 0.9790 |
75
+ | 0.2067 | 4.3662 | 7500 | 0.2979 | 0.7969 | 0.7943 | 0.7956 | 0.9793 |
76
+ | 0.2028 | 4.6573 | 8000 | 0.2924 | 0.7855 | 0.8132 | 0.7991 | 0.9792 |
77
+ | 0.1985 | 4.9483 | 8500 | 0.2904 | 0.8008 | 0.7986 | 0.7997 | 0.9791 |
78
+ | 0.1867 | 5.2394 | 9000 | 0.2884 | 0.8 | 0.8033 | 0.8017 | 0.9797 |
79
+ | 0.1838 | 5.5305 | 9500 | 0.2841 | 0.7997 | 0.8220 | 0.8107 | 0.9800 |
80
+ | 0.1838 | 5.8216 | 10000 | 0.2810 | 0.7895 | 0.8165 | 0.8028 | 0.9798 |
81
+ | 0.1786 | 6.1126 | 10500 | 0.2767 | 0.8065 | 0.8150 | 0.8108 | 0.9802 |
82
+ | 0.1719 | 6.4037 | 11000 | 0.2790 | 0.8133 | 0.8057 | 0.8095 | 0.9803 |
83
+ | 0.1706 | 6.6948 | 11500 | 0.2795 | 0.8140 | 0.7983 | 0.8061 | 0.9802 |
84
+ | 0.1695 | 6.9859 | 12000 | 0.2723 | 0.8124 | 0.8121 | 0.8123 | 0.9807 |
85
+ | 0.1638 | 7.2770 | 12500 | 0.2726 | 0.8070 | 0.8078 | 0.8074 | 0.9803 |
86
+ | 0.162 | 7.5680 | 13000 | 0.2724 | 0.8118 | 0.8173 | 0.8146 | 0.9807 |
87
+ | 0.1619 | 7.8591 | 13500 | 0.2678 | 0.8018 | 0.8235 | 0.8125 | 0.9805 |
88
+ | 0.1594 | 8.1502 | 14000 | 0.2719 | 0.8103 | 0.8068 | 0.8086 | 0.9800 |
89
+ | 0.1571 | 8.4413 | 14500 | 0.2688 | 0.8097 | 0.8127 | 0.8112 | 0.9805 |
90
+ | 0.1585 | 8.7324 | 15000 | 0.2673 | 0.8126 | 0.8150 | 0.8138 | 0.9806 |
91
+ | 0.1546 | 9.0234 | 15500 | 0.2658 | 0.8105 | 0.8120 | 0.8112 | 0.9805 |
92
+ | 0.1534 | 9.3145 | 16000 | 0.2652 | 0.8101 | 0.8198 | 0.8149 | 0.9807 |
93
+ | 0.1535 | 9.6056 | 16500 | 0.2646 | 0.8097 | 0.8140 | 0.8119 | 0.9807 |
94
+ | 0.1531 | 9.8967 | 17000 | 0.2650 | 0.8107 | 0.8117 | 0.8112 | 0.9806 |
95
+
96
+
97
+ ### Framework versions
98
+
99
+ - Transformers 4.44.2
100
+ - Pytorch 2.1.1+cu121
101
+ - Datasets 2.14.5
102
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mdeberta-v3-base",
3
+ "architectures": [
4
+ "DebertaForTokenClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "LABEL_0": 0,
23
+ "LABEL_1": 1,
24
+ "LABEL_2": 2,
25
+ "LABEL_3": 3,
26
+ "LABEL_4": 4,
27
+ "LABEL_5": 5,
28
+ "LABEL_6": 6
29
+ },
30
+ "layer_norm_eps": 1e-07,
31
+ "max_position_embeddings": 512,
32
+ "max_relative_positions": -1,
33
+ "model_type": "deberta-v2",
34
+ "norm_rel_ebd": "layer_norm",
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 6,
37
+ "pad_token_id": 0,
38
+ "pooler_dropout": 0,
39
+ "pooler_hidden_act": "gelu",
40
+ "pooler_hidden_size": 768,
41
+ "pos_att_type": [
42
+ "p2c",
43
+ "c2p"
44
+ ],
45
+ "position_biased_input": false,
46
+ "position_buckets": 256,
47
+ "relative_attention": true,
48
+ "share_att_key": true,
49
+ "torch_dtype": "float32",
50
+ "transformers_version": "4.44.2",
51
+ "type_vocab_size": 0,
52
+ "vocab_size": 251000
53
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.6323529411764706, "recall": 0.8775510204081632, "f1": 0.7350427350427351, "accuracy": 0.976061776061776}, "en_pud": {"precision": 0.7895771878072763, "recall": 0.7469767441860465, "f1": 0.7676864244741873, "accuracy": 0.9780884019644881}, "de_pud": {"precision": 0.7371375116931712, "recall": 0.7584215591915303, "f1": 0.7476280834914611, "accuracy": 0.9724344850217993}, "pt_pud": {"precision": 0.810928013876843, "recall": 0.8507734303912647, "f1": 0.830373001776199, "accuracy": 0.9829538172341608}, "ru_pud": {"precision": 0.6553930530164533, "recall": 0.6920849420849421, "f1": 0.6732394366197183, "accuracy": 0.9688452596228365}, "sv_pud": {"precision": 0.8186323092170465, "recall": 0.8027210884353742, "f1": 0.8105986261040234, "accuracy": 0.9815999161249738}, "tl_trg": {"precision": 0.6785714285714286, "recall": 0.8260869565217391, "f1": 0.7450980392156864, "accuracy": 0.9836512261580381}, "tl_ugnayan": {"precision": 0.5581395348837209, "recall": 0.7272727272727273, "f1": 0.6315789473684211, "accuracy": 0.9690063810391978}, "zh_gsd": {"precision": 0.7762148337595908, "recall": 0.7913950456323338, "f1": 0.7837314396384765, "accuracy": 0.9711122211122211}, "zh_gsdsimp": {"precision": 0.7893368010403121, "recall": 0.7955439056356488, "f1": 0.7924281984334205, "accuracy": 0.9726107226107226}, "hr_set": {"precision": 0.8732782369146006, "recall": 0.9037776193870278, "f1": 0.8882661996497373, "accuracy": 0.9865210222588623}, "da_ddt": {"precision": 0.8513189448441247, "recall": 0.7941834451901566, "f1": 0.8217592592592593, "accuracy": 0.9859323555821611}, "en_ewt": {"precision": 0.7971291866028708, "recall": 0.765625, "f1": 0.7810595405532114, "accuracy": 0.9782842570825199}, "pt_bosque": {"precision": 0.8327922077922078, "recall": 0.8444444444444444, "f1": 0.8385778504290968, "accuracy": 0.9854368932038835}, "sr_set": {"precision": 0.9155920281359906, "recall": 0.922077922077922, "f1": 0.9188235294117646, "accuracy": 0.9883547850450923}, "sk_snk": {"precision": 0.7766203703703703, "recall": 0.7333333333333333, "f1": 0.7543563799887577, "accuracy": 0.9663159547738693}, "sv_talbanken": {"precision": 0.8262910798122066, "recall": 0.8979591836734694, "f1": 0.8606356968215159, "accuracy": 0.9970555037542327}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4367c62c750054fb8da34a3a6c760e36475760449cae410331985f1215983f40
3
+ size 944366708
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bebaa03afdc7d5fe605635f9cfd09c0d6985625bee0fdb3cb48c1978ebca472
3
+ size 5304